Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cyl...Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cylindrical NLS equations are presented. Nine related linear independent infinitesimal generators can be obtained from the finite symmetry transformation groups by restricting the arbitrary constants in infinitesimal forms. Some exact solutions are derived from a simple travelling wave solution.展开更多
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutio...In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.展开更多
Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed b...Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
Machine learning potentials are promising in atomistic simulations due to their comparable accuracy to first-principles theory but much lower computational cost.However,the reliability,speed,and transferability of ato...Machine learning potentials are promising in atomistic simulations due to their comparable accuracy to first-principles theory but much lower computational cost.However,the reliability,speed,and transferability of atomistic machine learning potentials depend strongly on the way atomic configurations are represented.A wise choice of descriptors used as input for the machine learning program is the key for a successful machine learning representation.Here we develop a simple and efficient strategy to automatically select an optimal set of linearly-independent atomic features out of a large pool of candidates,based on the correlations that are intrinsic to the training data.Through applications to the construction of embedded atom neural network potentials for several benchmark molecules with less redundant linearly-independent embedded density descriptors,we demonstrate the efficiency and accuracy of this new strategy.The proposed algorithm can greatly simplify the initial selection of atomic features and vastly improve the performance of the atomistic machine learning potentials.展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)d...Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)dξ1dξ2︱^2dt/t)^1/2.Let s be an integer with s ∈ [n + 1, 2n] and p0 be a number satisfying 2n/s p0 2. Suppose that νω=∏i^2=1ω^i^p/p) and each ωi is a nonnegative function on Rn. In this paper, we show that under some condition on m, Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p(νω) if p0 〈 p1, p2 〈 ∞ with 1/p = 1/p1 + 1/p2. Moreover,if p0 〉 2n/s and p1 = p0 or p2 = p0, then Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p,∞(νω). The weighted end-point L log L type estimate and strong estimate for the commutators of Tm are also given. These were done by considering the boundedness of some related multilinear square functions associated with mild regularity kernels and essentially improving some basic lemmas which have been used before.展开更多
基金The project supported by K.C. Wong Magna Fund in Ningbo University, National Natural Science Foundation of China under Grant Nos. 10747141 and 10735030;Zhejiang Provincial Natural Science Foundations of China under Grant No. 605408;Ningbo Natural Science Foundation under Grant Nos. 2007A610049 and 2006A610093;National Basic Research Program of China (973 Program 2007CB814800);Program for Changjiang Scholars and Innovative Research Team in University (IRTO734)
文摘Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cylindrical NLS equations are presented. Nine related linear independent infinitesimal generators can be obtained from the finite symmetry transformation groups by restricting the arbitrary constants in infinitesimal forms. Some exact solutions are derived from a simple travelling wave solution.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant Nos. 605408 and Y604056, the Doctoral Foundation of Ningbo City under Grant No. 2005A61030, and the Postdoctoral Science Foundation of China under Grant No. 2005038441
文摘In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.
文摘Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
基金supported by CAS Project for Young Scientists in Basic Research(YSBR-005)the National Natural Science Foundation of China(No.22073089 and No.22033007)+1 种基金Anhui Initiative in Quantum Information Technologies(AHY090200)the Fundamental Research Funds for Central Universities(WK2060000017)。
文摘Machine learning potentials are promising in atomistic simulations due to their comparable accuracy to first-principles theory but much lower computational cost.However,the reliability,speed,and transferability of atomistic machine learning potentials depend strongly on the way atomic configurations are represented.A wise choice of descriptors used as input for the machine learning program is the key for a successful machine learning representation.Here we develop a simple and efficient strategy to automatically select an optimal set of linearly-independent atomic features out of a large pool of candidates,based on the correlations that are intrinsic to the training data.Through applications to the construction of embedded atom neural network potentials for several benchmark molecules with less redundant linearly-independent embedded density descriptors,we demonstrate the efficiency and accuracy of this new strategy.The proposed algorithm can greatly simplify the initial selection of atomic features and vastly improve the performance of the atomistic machine learning potentials.
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401175, 11501169 and 11471041)the Fundamental Research Funds for the Central Universities (Grant No. 2014KJJCA10)+2 种基金Program for New Century Excellent Talents in University (Grant No. NCET-13-0065)Grantin-Aid for Scientific Research (C) (Grant No. 15K04942)Japan Society for the Promotion of Science
文摘Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)dξ1dξ2︱^2dt/t)^1/2.Let s be an integer with s ∈ [n + 1, 2n] and p0 be a number satisfying 2n/s p0 2. Suppose that νω=∏i^2=1ω^i^p/p) and each ωi is a nonnegative function on Rn. In this paper, we show that under some condition on m, Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p(νω) if p0 〈 p1, p2 〈 ∞ with 1/p = 1/p1 + 1/p2. Moreover,if p0 〉 2n/s and p1 = p0 or p2 = p0, then Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p,∞(νω). The weighted end-point L log L type estimate and strong estimate for the commutators of Tm are also given. These were done by considering the boundedness of some related multilinear square functions associated with mild regularity kernels and essentially improving some basic lemmas which have been used before.