Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the north...Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the northern middle and high latitudes. In this study, time series dataset of normalized difference vegetation index (NDVI) and corresponding ground-based information on vegetation, climate, soil, and solar radiation, together with an ecological process model, were used to explore the seasonal trends of terrestrial NPP and their geographical differences in China from 1982 to 1999. As the results,. seasonal total NPP in China showed a significant increase for all four seasons (spring, summer, autumn and winter) during the past 18 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The response of NPP to climate changes varied with different vegetation types. The increased NPP was primarily led by an advanced growing season for broadleaf evergreen forest, needle-leaf evergreen forest, and needle-leaf deciduous forest, whilst that was mainly due to enhanced vegetation activity (amplitude of growth cycle) during growing season for broadleaf deciduous forest, broadleaf and needle-leaf mixed forest, broadleaf trees with groundcover, perennial grasslands, broadleaf shrubs with grasslands, tundra, desert, and cultivation. The regions with the largest increase in spring NPP appeared mainly in eastern China, while the areas with the largest increase in summer NPP occurred in most parts of Northwestern China, Qinghai-Xizang Plateau, Mts. Xiaoxinganling-Changbaishan, Sanjiang Plain, Songliao Plain, Sichuan Basin, Leizhou Peninsula, part of the middle and lower Yangtze River, and southeastern mountainous areas of China. In autumn, the largest NPP increase appeared in Yunnan Plateau-Eastern Xizang and the areas around Hulun Lake. Such different ways of the NPP responses depended on regional climate attributes and their changes.展开更多
Based on the daily precipitation data of nine stations representing the Xijiang River valley and the National Center for Environmental Prediction/National Center for Atmospheric Research (USA) reanalysis data, this st...Based on the daily precipitation data of nine stations representing the Xijiang River valley and the National Center for Environmental Prediction/National Center for Atmospheric Research (USA) reanalysis data, this study uses the wavelet analysis and band-pass filter methods to investigate the atmospheric intraseasonal oscillation characteristics of flood-causing rainstorms in the valley during the annually first raining seasons in 1968, 1994, 1998, 2002 and 2005. Results show that the daily precipitation in the valley exhibits significant quasi-biweekly (10 to 20 days) oscillations. The flood-causing rainstorms in the valley were mainly associated with the confluence of low-frequency warm and humid airflow in the lower latitudes and cold and dry airflow in the higher latitudes. The low-frequency vortexes were propagating or in control when this type of rainstorms took place over the valley, being favorable for the convergence of moisture at lower levels and thus vital to the formation of the rainstorms.展开更多
文摘Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the northern middle and high latitudes. In this study, time series dataset of normalized difference vegetation index (NDVI) and corresponding ground-based information on vegetation, climate, soil, and solar radiation, together with an ecological process model, were used to explore the seasonal trends of terrestrial NPP and their geographical differences in China from 1982 to 1999. As the results,. seasonal total NPP in China showed a significant increase for all four seasons (spring, summer, autumn and winter) during the past 18 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The response of NPP to climate changes varied with different vegetation types. The increased NPP was primarily led by an advanced growing season for broadleaf evergreen forest, needle-leaf evergreen forest, and needle-leaf deciduous forest, whilst that was mainly due to enhanced vegetation activity (amplitude of growth cycle) during growing season for broadleaf deciduous forest, broadleaf and needle-leaf mixed forest, broadleaf trees with groundcover, perennial grasslands, broadleaf shrubs with grasslands, tundra, desert, and cultivation. The regions with the largest increase in spring NPP appeared mainly in eastern China, while the areas with the largest increase in summer NPP occurred in most parts of Northwestern China, Qinghai-Xizang Plateau, Mts. Xiaoxinganling-Changbaishan, Sanjiang Plain, Songliao Plain, Sichuan Basin, Leizhou Peninsula, part of the middle and lower Yangtze River, and southeastern mountainous areas of China. In autumn, the largest NPP increase appeared in Yunnan Plateau-Eastern Xizang and the areas around Hulun Lake. Such different ways of the NPP responses depended on regional climate attributes and their changes.
基金Project of Science and Technology Program of Guangdong (2006B37202004)Key project of Science and Technology Program of Guangzhou (2007Z1-E0101)+2 种基金Project of Science and Technology Programof Guangdong (2009A030302012)Specialized Project for Forecasters of Promotion of New Technology of China Meteorological Administration (CMATG2007Y04)Project of Guangdong Meteorlogical Bureau(2008A02)
文摘Based on the daily precipitation data of nine stations representing the Xijiang River valley and the National Center for Environmental Prediction/National Center for Atmospheric Research (USA) reanalysis data, this study uses the wavelet analysis and band-pass filter methods to investigate the atmospheric intraseasonal oscillation characteristics of flood-causing rainstorms in the valley during the annually first raining seasons in 1968, 1994, 1998, 2002 and 2005. Results show that the daily precipitation in the valley exhibits significant quasi-biweekly (10 to 20 days) oscillations. The flood-causing rainstorms in the valley were mainly associated with the confluence of low-frequency warm and humid airflow in the lower latitudes and cold and dry airflow in the higher latitudes. The low-frequency vortexes were propagating or in control when this type of rainstorms took place over the valley, being favorable for the convergence of moisture at lower levels and thus vital to the formation of the rainstorms.