In this paper, by reproducing kernel of the space W ,the Hermitean numerical solution u 2m,2n (x,y) of the dual Fredholm integral equations of second kind is constructed.It is also proved that,as the density of the no...In this paper, by reproducing kernel of the space W ,the Hermitean numerical solution u 2m,2n (x,y) of the dual Fredholm integral equations of second kind is constructed.It is also proved that,as the density of the node system increases infinitely, u 2m,2n (x,y)、u 2m,2n x′(x,y),u 2m,2n y′(x,y) and u 2m,2n xy″(x,y) ,uniformly coverge to u(x,y),u x′(x,y),u y′(x,y), and u xy″(x,y). Furthermore,the error of the approximate solution decreases monotoically in the W space norm as the nodes increases.展开更多
函数和它的傅立叶级数之间的关系,常见的有下列四种。命题1 (狄里赫勒定理)若f(x)∈C[-π,π),或在[-π,π]上只有有限个第一类间断点,并且可以把[-π,π]分为f(x)的有限个单调区间,则有f(x)=a<sub>0</sub>/2+sum f...函数和它的傅立叶级数之间的关系,常见的有下列四种。命题1 (狄里赫勒定理)若f(x)∈C[-π,π),或在[-π,π]上只有有限个第一类间断点,并且可以把[-π,π]分为f(x)的有限个单调区间,则有f(x)=a<sub>0</sub>/2+sum from i=1 to ∞(a<sub>i</sub>cosix+b<sub>i</sub>sinix)(1)其中x∈(-π,π)为f(x)的连续点,a<sub>i</sub>,b<sub>i</sub>为f(x)的傅立叶系数(以下同)。当x∈(-π,π)为f(x)的间断点时,则(1)式友端改为[f(x—0)+f(x+0)]/2。当x=±π时,则(1)式左端改为[f(-π+0)+f(π-0)]/2。命题2 若f(x)∈L<sub>2</sub>[-π,π],则对任意确定的n,有||f(x)—a<sub>0</sub>/2—sum from i=1 to n(a<sub>1</sub>cosix+bsinix)||<sub>2</sub>展开更多
基金Supported by Institution of Higher Education Scientific Research Project in Ningxia(NGY2017011)Natural Science Foundations of Ningxia(NZ15055)+1 种基金Natural Science Foundations of China(1156105511461053)
文摘In this paper, by reproducing kernel of the space W ,the Hermitean numerical solution u 2m,2n (x,y) of the dual Fredholm integral equations of second kind is constructed.It is also proved that,as the density of the node system increases infinitely, u 2m,2n (x,y)、u 2m,2n x′(x,y),u 2m,2n y′(x,y) and u 2m,2n xy″(x,y) ,uniformly coverge to u(x,y),u x′(x,y),u y′(x,y), and u xy″(x,y). Furthermore,the error of the approximate solution decreases monotoically in the W space norm as the nodes increases.
文摘函数和它的傅立叶级数之间的关系,常见的有下列四种。命题1 (狄里赫勒定理)若f(x)∈C[-π,π),或在[-π,π]上只有有限个第一类间断点,并且可以把[-π,π]分为f(x)的有限个单调区间,则有f(x)=a<sub>0</sub>/2+sum from i=1 to ∞(a<sub>i</sub>cosix+b<sub>i</sub>sinix)(1)其中x∈(-π,π)为f(x)的连续点,a<sub>i</sub>,b<sub>i</sub>为f(x)的傅立叶系数(以下同)。当x∈(-π,π)为f(x)的间断点时,则(1)式友端改为[f(x—0)+f(x+0)]/2。当x=±π时,则(1)式左端改为[f(-π+0)+f(π-0)]/2。命题2 若f(x)∈L<sub>2</sub>[-π,π],则对任意确定的n,有||f(x)—a<sub>0</sub>/2—sum from i=1 to n(a<sub>1</sub>cosix+bsinix)||<sub>2</sub>