Infrared photodissociation spectroscopy of mass-selected[MO(CO2)n]^+(M=Sc,Y,La)complexes indicates that the conversion from the solvated structure into carbonate one can be achieved by the ScO^+ cation at n=5 and by t...Infrared photodissociation spectroscopy of mass-selected[MO(CO2)n]^+(M=Sc,Y,La)complexes indicates that the conversion from the solvated structure into carbonate one can be achieved by the ScO^+ cation at n=5 and by the YO^+ cation at n=4,while only the solvated structures are observed for the LaO^+ cation.These findings suggest that both the ScO^+ and YO^+cations are able to fix CO2 into carbonate.Quantum chemical calculations are performed on[MO(CO2)n]^+ to identify the structures of the low-lying isomers and to assign the observed spectral features.Theoretical analyses show that the[YO(CO2)n]^+ complex has the smallest barrier for the conversion from the solvated structure into carbonate one,while[LaO(CO2)n]^+ exhibits the largest conversion barrier among the three metal oxide cations.The present system affords a model in clarifying the effect of different metals in catalytic CO2 transformation at the molecular level.展开更多
基金supported by the National Natural Science Foundation of China (No.21327901,No.21673231,No.21673234,and No.21688102)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB17000000)K. C. Wong Education Foundation.
文摘Infrared photodissociation spectroscopy of mass-selected[MO(CO2)n]^+(M=Sc,Y,La)complexes indicates that the conversion from the solvated structure into carbonate one can be achieved by the ScO^+ cation at n=5 and by the YO^+ cation at n=4,while only the solvated structures are observed for the LaO^+ cation.These findings suggest that both the ScO^+ and YO^+cations are able to fix CO2 into carbonate.Quantum chemical calculations are performed on[MO(CO2)n]^+ to identify the structures of the low-lying isomers and to assign the observed spectral features.Theoretical analyses show that the[YO(CO2)n]^+ complex has the smallest barrier for the conversion from the solvated structure into carbonate one,while[LaO(CO2)n]^+ exhibits the largest conversion barrier among the three metal oxide cations.The present system affords a model in clarifying the effect of different metals in catalytic CO2 transformation at the molecular level.