We investigate the quasi-exact solutions of the Schrodinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x1 ...We investigate the quasi-exact solutions of the Schrodinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px= p1+ ix3, py= p2 + ix4. Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetrie one, are also worked out.展开更多
文摘We investigate the quasi-exact solutions of the Schrodinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px= p1+ ix3, py= p2 + ix4. Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetrie one, are also worked out.