The effect of Zn addition on microstructure and mechanical properties of the Mg-2Er alloy was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the alloys with 1...The effect of Zn addition on microstructure and mechanical properties of the Mg-2Er alloy was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the alloys with 1%and 2%Zn (mass fraction) are composed of the W-phase and theα-Mg matrix. Meanwhile, the addition of 4%-10%Zn results in the formation of the I-phase, the W-phase and theα-Mg matrix. When the addition of Zn reaches 12%, the W-phase disappears and the phase constituents of the alloys mainly include the I-phase and the Mg4Zn7 phase besides theα-Mg solid solution. The alloy containing 6%Zn has better mechanical properties, of which the ultimate tensile strength (UTS) and the yield tensile strength (YTS) are about 224 MPa and 134 MPa, respectively, companying an elongation of 10.4%.展开更多
Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electro...Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.展开更多
Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, an...Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.展开更多
基金Project(Z131100003213019)supported by the Science and Technology Commission of Beijing Municipal,ChinaProject(2144043)supported by the Natural Science Foundation of Beijing Municipal,China+1 种基金Project(KM201410005014)supported by the Education Commission of Beijing Municipal,ChinaProject(2014-RX-L07)supported by the Rixin Talents Plan of Beijing University of Technology,China
文摘The effect of Zn addition on microstructure and mechanical properties of the Mg-2Er alloy was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the alloys with 1%and 2%Zn (mass fraction) are composed of the W-phase and theα-Mg matrix. Meanwhile, the addition of 4%-10%Zn results in the formation of the I-phase, the W-phase and theα-Mg matrix. When the addition of Zn reaches 12%, the W-phase disappears and the phase constituents of the alloys mainly include the I-phase and the Mg4Zn7 phase besides theα-Mg solid solution. The alloy containing 6%Zn has better mechanical properties, of which the ultimate tensile strength (UTS) and the yield tensile strength (YTS) are about 224 MPa and 134 MPa, respectively, companying an elongation of 10.4%.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2010CSTC-BJLKR)supported by Chongqing Science and Technology Commission, ChinaProject(CDJXS10132203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.
基金Project (09009) supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.