The classical Hardy-Littlewood-Sobolev theorems for Riesz potentials (?Δ)?α/2 are extended to the generalised fractional integrals L –α/2 for 0 < α < n, where L=?div A? is a uniformly complex elliptic opera...The classical Hardy-Littlewood-Sobolev theorems for Riesz potentials (?Δ)?α/2 are extended to the generalised fractional integrals L –α/2 for 0 < α < n, where L=?div A? is a uniformly complex elliptic operator with bounded measurable coefficients in ?n.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.1017111) Foundation of Advanced Research Center,Zhongshan University.
文摘The classical Hardy-Littlewood-Sobolev theorems for Riesz potentials (?Δ)?α/2 are extended to the generalised fractional integrals L –α/2 for 0 < α < n, where L=?div A? is a uniformly complex elliptic operator with bounded measurable coefficients in ?n.