Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and bett...Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and better brightening effect than Gd@C82(OH)x, in Tl-weighted MR images in vivo. This is a result of the proton relaxivity from the original gadofullerenes, which retained a perfect carbon cage structure and so might completely avoid the release of Gd^3+ ions. A "secondary spin-electron transfer" relaxation mechanism was proposed to explain how the encaged Gd^3+ ions of carbon nanohybrids interact with the surrounding water molecules. This approach opens new opportunities for developing highly efficient and low toxicity MRI contrast agents.展开更多
文摘Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and better brightening effect than Gd@C82(OH)x, in Tl-weighted MR images in vivo. This is a result of the proton relaxivity from the original gadofullerenes, which retained a perfect carbon cage structure and so might completely avoid the release of Gd^3+ ions. A "secondary spin-electron transfer" relaxation mechanism was proposed to explain how the encaged Gd^3+ ions of carbon nanohybrids interact with the surrounding water molecules. This approach opens new opportunities for developing highly efficient and low toxicity MRI contrast agents.