期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
等仿射曲线收缩流的Harnack不等式
1
作者
于延华
金伶
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第1期147-152,共6页
在仿射空间中研究了基于等仿射曲线收缩流的一族闭凸等仿射曲线的Harnack不等式.首先,根据仿射空间中等仿射曲线的几何演化性质定义一类新的闭凸等仿射曲线Harnack量,进而得到该Harnack量满足的几何演化方程.其次,利用最大值原理证明Har...
在仿射空间中研究了基于等仿射曲线收缩流的一族闭凸等仿射曲线的Harnack不等式.首先,根据仿射空间中等仿射曲线的几何演化性质定义一类新的闭凸等仿射曲线Harnack量,进而得到该Harnack量满足的几何演化方程.其次,利用最大值原理证明Harnack量为非负,即给出闭凸等仿射曲线的Harnack不等式,并得到Harnack量中参数的相应约束条件.然后,利用新定义的Harnack量进一步研究了闭凸等仿射曲线的Hamilton’s Harnack不等式.最后基于闭凸等仿射曲线Harnack不等式和柯西-施瓦兹(Cauchy-Schwarz)不等式推导出了经典的Harnack不等式.
展开更多
关键词
仿射
空间
等仿射曲线
曲线
收缩流
HARNACK不等式
下载PDF
职称材料
题名
等仿射曲线收缩流的Harnack不等式
1
作者
于延华
金伶
机构
东北大学理学院
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第1期147-152,共6页
基金
国家自然科学基金资助项目(61773110)。
文摘
在仿射空间中研究了基于等仿射曲线收缩流的一族闭凸等仿射曲线的Harnack不等式.首先,根据仿射空间中等仿射曲线的几何演化性质定义一类新的闭凸等仿射曲线Harnack量,进而得到该Harnack量满足的几何演化方程.其次,利用最大值原理证明Harnack量为非负,即给出闭凸等仿射曲线的Harnack不等式,并得到Harnack量中参数的相应约束条件.然后,利用新定义的Harnack量进一步研究了闭凸等仿射曲线的Hamilton’s Harnack不等式.最后基于闭凸等仿射曲线Harnack不等式和柯西-施瓦兹(Cauchy-Schwarz)不等式推导出了经典的Harnack不等式.
关键词
仿射
空间
等仿射曲线
曲线
收缩流
HARNACK不等式
Keywords
affine space
equi-affine curve
curve shortening flow
Harnack inequality
分类号
O185 [理学—基础数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
等仿射曲线收缩流的Harnack不等式
于延华
金伶
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部