With the stat-of-the-art laser technique, the quality of electron beam generated from LPA (laser-plasma accelerator) is now becoming much better. The natural merits of electron beam from LPA, e.g., high peak current...With the stat-of-the-art laser technique, the quality of electron beam generated from LPA (laser-plasma accelerator) is now becoming much better. The natural merits of electron beam from LPA, e.g., high peak current, ultra-low emittance and ultra-short bunch length, etc., pave the way to the novel light sources, especially in the realm of developing much more compact x-ray light sources, e.g., table-top XFEL (x-ray free-electron laser). However, the radiation power is limited by the rather larger energy spread than conventional radio-frequency electron LINAC (linear accelerator). Luckily, much more power could be extracted by using the undulator with transverse gradient when energy spread effect could be compensated. In this paper, we introduce a novel soit x-ray light source driven by LPA together with TGU (transverse gradient undulator) technique, meanwhile we present a simple idea on how to achieve much higher rep-rate (e.g., -100 kHz) FELs (free-electron lasers) boosted by TGU based on storage rings.展开更多
Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field...Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field that project on the antennas can be confined to a spot with subwavelength width (-λ/11),and the light intensity can be enhanced to 91 times the incident light in the near-field with the bow-tie antenna. The enhancement also exists in the antenna arrays. The highest enhancement of the light intensity at the bow-tie antenna gap can reach about 28000 times,and the localized field can be coupled to a nano-particle near the antenna gap.展开更多
Laser-driven magnetic reconnection(LDMR) occurring with self-generated B fields has been experimentally and theoretically studied extensively, where strong B fields of more than megagauss are spontaneously generated i...Laser-driven magnetic reconnection(LDMR) occurring with self-generated B fields has been experimentally and theoretically studied extensively, where strong B fields of more than megagauss are spontaneously generated in highpower laser–plasma interactions, which are located on the target surface and produced by non-parallel temperature and density gradients of expanding plasmas. For properties of the short-lived and strong B fields in laser plasmas, LDMR opened up a new territory in a parameter regime that has never been exploited before. Here we review the recent results of LDMR taking place in both high and low plasma beta environments. We aim to understand the basic physics processes of magnetic reconnection, such as particle accelerations, scale of the diffusion region, and guide field effects. Some applications of experimental results are also given especially for space and solar plasmas.展开更多
Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This dia...Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.展开更多
Extreme ultraviolet lithography is most promising for the next generation lithography. However, debris from laser-produced plasma, particularly energetic ions, severely decreases the lifetime of extreme ultraviolet op...Extreme ultraviolet lithography is most promising for the next generation lithography. However, debris from laser-produced plasma, particularly energetic ions, severely decreases the lifetime of extreme ultraviolet optics. We measured the characteris- tics of ions from tin plasma by the time of flight method with a frequency-doubled Nd: YAG laser at the intensity of 3.5x1010 W/cm2 (532 nm, 8 ns). Our measurement shows that the maximum and peak of tin ions energies from plasma under the above experimental parameters are about 4.2 and 1.8 keV, respectively. Moreover, it is found that kinetic energy angular distribution of tin ions can be fitted by cos0.8(θ), where θ is the angle with respect to the target normal. We also investigated the mitigation effect of argon, helium gases to the tin ions, and found that tin ions from the plasma can be mitigated effectively at the pressure -38 mTorr for argon or -375 mTorr for helium, respectively.展开更多
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy...Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.展开更多
The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ...The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I - 2 × 10^14 W. cm-2) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15-20 4- 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.展开更多
Technetium-99(~99Tc),largely produced by nuclear fission of ~235U or ~239Pu,is a component of radioactive waste.This study focused on a remediation strategy for the reduction of pertechnetate(Tc O_4^-)by studying its ...Technetium-99(~99Tc),largely produced by nuclear fission of ~235U or ~239Pu,is a component of radioactive waste.This study focused on a remediation strategy for the reduction of pertechnetate(Tc O_4^-)by studying its chemical analogue rhenium(Re(VⅡ))to avoid the complication of directly working with radioactive elements.Nanoscale zero-valent iron particles supported on graphene(NZVI/r GOs)from GOs-bound Fe ions were prepared by using a H_2/Ar plasma technique and were applied in the reductive immobilization of perrhenate(Re O_4^-).The experimental results demonstrated that NZVI/r GOs could efficiently remove Re from the aqueous solution,with enhanced reactivity,improved kinetics(50 min to reach equilibrium)and excellent removal capacity(85.77 mg/g).The results of X-ray photoelectron spectroscopy analysis showed that the mechanisms of Re immobilization by NZVI/r GOs included adsorption and reduction,which are significant to the prediction and estimation of the effectiveness of reductive Tc O_4^- by NZVI/r GOs in the natural environment.展开更多
Activated carbon(AC)in organic electrolytebased electric double-layer capacitors(EDLCs)usually suffers from low specific capacitance.Most studies on AC focus on improving its surface area and optimizing pore structure...Activated carbon(AC)in organic electrolytebased electric double-layer capacitors(EDLCs)usually suffers from low specific capacitance.Most studies on AC focus on improving its surface area and optimizing pore structures to enhance its electrochemical performance in EDLCs.Unfortunately,the interfacial microenvironment,which is composed of nanoporous carbon and the organic electrolyte confined in it,is always ignored.Herein,a simple and powerful strategy to create AC with an ionophobic surface is proposed to address the poor efficiency of the electric doublelayer process.The polar C±F bonds formed in the AC material are characterized through near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy.The ionophobic characteristic of YP-F60 s in an organic electrolyte is extensively studied via contact angle measurements and smallangle X-ray scattering spectroscopy.An EDLC constructed with YP-F60 s as the electrode and 1 mol L^(-1) tetraethylammonium tetrafluoroborate/propylene carbonate as the electrolyte demonstrates high specific capacitance,low internal resistance,and excellent cycling stability.Our results successfully demonstrate the importance of the interfacial microenvironment of AC and its confined electrolyte to the electrochemical performance of EDLCs.Our work also offers new perspectives on the use of the CF;plasma technique to fabricate low-cost superior carbon for EDLCs.展开更多
An Er203 coating-type selective emitter for themophotovoltaic application was prepared by plasma spray technology. The test results show that plasma spray technology could be used to prepare the Er203 coating-type sel...An Er203 coating-type selective emitter for themophotovoltaic application was prepared by plasma spray technology. The test results show that plasma spray technology could be used to prepare the Er203 coating-type selective emitter with good stability at 1400℃. Based on the measurements of the high temperature normal spectral emissivity and the spectral hemispherical emissivity of the samples at room temperature, the influence of the coating thickness was discussed, and the selective emission performance of the sample was evaluated using radiative efficiency as the criterion. The results demonstrate that the emission of substrate could not be neglected unless the coating thickness would be larger than the penetration depth, which is around 100 μm. The selective emission peak of the Er203 coating occurs at 1550 nm, matching well with the GaSb cells. However, the radiative efficiency is not larger than that of the SiC emitter, because the non-convertible emission of 1.725-5 μm accounts for a large proportion of the total radiation power, especially at high temperature. Effective suppression of this band emission is essential to the improvement of the radiation efficiency of the emitter.展开更多
基金The authors would like to thank Huang, Z., and Ding, Y. from SLAC and Feng, C., Deng, H., Lan, T., Shen, L., Wang, X. and Liu, B. from SINAP for helpful discussions. The authors are grateful for the support of Major State Basic Research Development Program of China (No. 2011CB808300), and Natural Science Foundation of China (No. 11075199).
文摘With the stat-of-the-art laser technique, the quality of electron beam generated from LPA (laser-plasma accelerator) is now becoming much better. The natural merits of electron beam from LPA, e.g., high peak current, ultra-low emittance and ultra-short bunch length, etc., pave the way to the novel light sources, especially in the realm of developing much more compact x-ray light sources, e.g., table-top XFEL (x-ray free-electron laser). However, the radiation power is limited by the rather larger energy spread than conventional radio-frequency electron LINAC (linear accelerator). Luckily, much more power could be extracted by using the undulator with transverse gradient when energy spread effect could be compensated. In this paper, we introduce a novel soit x-ray light source driven by LPA together with TGU (transverse gradient undulator) technique, meanwhile we present a simple idea on how to achieve much higher rep-rate (e.g., -100 kHz) FELs (free-electron lasers) boosted by TGU based on storage rings.
文摘Nano-rod and bow-tie antennas that are gold nano-antennas on dielectric material and the nano-rod antenna arrays are numerically studied by the finite difference time domain method in three dimensions. The light field that project on the antennas can be confined to a spot with subwavelength width (-λ/11),and the light intensity can be enhanced to 91 times the incident light in the near-field with the bow-tie antenna. The enhancement also exists in the antenna arrays. The highest enhancement of the light intensity at the bow-tie antenna gap can reach about 28000 times,and the localized field can be coupled to a nano-particle near the antenna gap.
基金supported by the Science Challenge Project(No.TZ2016005)the National Basic Research Program of China(No.2013CBA01503)+1 种基金the National Natural Science Foundation of China(Nos.10905004,11220101002,and11622323)the Fundamental Research Funds for the Central Universities
文摘Laser-driven magnetic reconnection(LDMR) occurring with self-generated B fields has been experimentally and theoretically studied extensively, where strong B fields of more than megagauss are spontaneously generated in highpower laser–plasma interactions, which are located on the target surface and produced by non-parallel temperature and density gradients of expanding plasmas. For properties of the short-lived and strong B fields in laser plasmas, LDMR opened up a new territory in a parameter regime that has never been exploited before. Here we review the recent results of LDMR taking place in both high and low plasma beta environments. We aim to understand the basic physics processes of magnetic reconnection, such as particle accelerations, scale of the diffusion region, and guide field effects. Some applications of experimental results are also given especially for space and solar plasmas.
基金funding from the European Research Council under the European Community Seventh Framework Programme(FP7/2007-2013)/ERC grant agreement No.256973the U.S.Department of Energy under Contract No.B591485 to Lawrence Livermore National Laboratory,Field Work Proposal No.57789 to Argonne National Laboratory,grant Nos.DE-NA0002724and DE-SC0016566 to the University of Chicago,and Cooperative Agreement DE-NA0001944 to the Laboratory for Laser Energetics University of Rochester+5 种基金support from the National Science Foundation under grant PHY-1619573supported in part by National Institutes of Health through resources provided by the Computation Institute and the Biological Sciences Division of the University of Chicago and Argonne National Laboratory,under grant S10 RR029030-01the U.S.Department of Energy Innovative and Novel Computational Impact on Theory and Experiment(INCITE)and ASCR Leadership Computing Challenge(ALCC)programmessupported by the Office of Science of the U.S.Department of Energy under contract DE-AC02-06CH11357Support from AWE plc.,the Engineering and Physical Sciences Research Council(grant Nos.EP/M022331/1 and EP/N014472/1)the Science and Technology Facilities Council of the United Kingdom is acknowledged
文摘Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.
基金supported by the National Natural Science Foundation ofChina (Grant Nos. 60978014,61178022 and 11074027)the Basic Research Fund from Sci. & Tech. Department of Jilin Province (Grant Nos.20100521,20100168 and 20111812)
文摘Extreme ultraviolet lithography is most promising for the next generation lithography. However, debris from laser-produced plasma, particularly energetic ions, severely decreases the lifetime of extreme ultraviolet optics. We measured the characteris- tics of ions from tin plasma by the time of flight method with a frequency-doubled Nd: YAG laser at the intensity of 3.5x1010 W/cm2 (532 nm, 8 ns). Our measurement shows that the maximum and peak of tin ions energies from plasma under the above experimental parameters are about 4.2 and 1.8 keV, respectively. Moreover, it is found that kinetic energy angular distribution of tin ions can be fitted by cos0.8(θ), where θ is the angle with respect to the target normal. We also investigated the mitigation effect of argon, helium gases to the tin ions, and found that tin ions from the plasma can be mitigated effectively at the pressure -38 mTorr for argon or -375 mTorr for helium, respectively.
基金supported by the Science Challenge Project (No. TZ2016005)the National Basic Program of China (No. 2013CBA01501/03)+2 种基金the National Natural Science Foundation of China (Nos. 11503041, 11522326, 11622323, and 11573040)the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB16010200 and XDB07030300)the Project Funded by China Postdoctoral Science Foundation (No. 2015M571124)
文摘Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
基金funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654148 LaserlabEuropesupported by RAS Presidium Program for Basic Research #11+1 种基金by Competitiveness Program of NRNU MEPhIsupported by the NNSA-DS and SC-OFES Joint Program in High Energy Density Laboratory Plasmas, grant No. DENA0002956
文摘The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I - 2 × 10^14 W. cm-2) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15-20 4- 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.
基金the National Natural Science Foundation of China(21477133,41273134,91326202,21225730)
文摘Technetium-99(~99Tc),largely produced by nuclear fission of ~235U or ~239Pu,is a component of radioactive waste.This study focused on a remediation strategy for the reduction of pertechnetate(Tc O_4^-)by studying its chemical analogue rhenium(Re(VⅡ))to avoid the complication of directly working with radioactive elements.Nanoscale zero-valent iron particles supported on graphene(NZVI/r GOs)from GOs-bound Fe ions were prepared by using a H_2/Ar plasma technique and were applied in the reductive immobilization of perrhenate(Re O_4^-).The experimental results demonstrated that NZVI/r GOs could efficiently remove Re from the aqueous solution,with enhanced reactivity,improved kinetics(50 min to reach equilibrium)and excellent removal capacity(85.77 mg/g).The results of X-ray photoelectron spectroscopy analysis showed that the mechanisms of Re immobilization by NZVI/r GOs included adsorption and reduction,which are significant to the prediction and estimation of the effectiveness of reductive Tc O_4^- by NZVI/r GOs in the natural environment.
基金supported by the National Natural Science Foundation of China(21203008 and 21975025)Beijing Natural Science Foundation(2172051)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University。
文摘Activated carbon(AC)in organic electrolytebased electric double-layer capacitors(EDLCs)usually suffers from low specific capacitance.Most studies on AC focus on improving its surface area and optimizing pore structures to enhance its electrochemical performance in EDLCs.Unfortunately,the interfacial microenvironment,which is composed of nanoporous carbon and the organic electrolyte confined in it,is always ignored.Herein,a simple and powerful strategy to create AC with an ionophobic surface is proposed to address the poor efficiency of the electric doublelayer process.The polar C±F bonds formed in the AC material are characterized through near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy.The ionophobic characteristic of YP-F60 s in an organic electrolyte is extensively studied via contact angle measurements and smallangle X-ray scattering spectroscopy.An EDLC constructed with YP-F60 s as the electrode and 1 mol L^(-1) tetraethylammonium tetrafluoroborate/propylene carbonate as the electrolyte demonstrates high specific capacitance,low internal resistance,and excellent cycling stability.Our results successfully demonstrate the importance of the interfacial microenvironment of AC and its confined electrolyte to the electrochemical performance of EDLCs.Our work also offers new perspectives on the use of the CF;plasma technique to fabricate low-cost superior carbon for EDLCs.
基金supported by the Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities
文摘An Er203 coating-type selective emitter for themophotovoltaic application was prepared by plasma spray technology. The test results show that plasma spray technology could be used to prepare the Er203 coating-type selective emitter with good stability at 1400℃. Based on the measurements of the high temperature normal spectral emissivity and the spectral hemispherical emissivity of the samples at room temperature, the influence of the coating thickness was discussed, and the selective emission performance of the sample was evaluated using radiative efficiency as the criterion. The results demonstrate that the emission of substrate could not be neglected unless the coating thickness would be larger than the penetration depth, which is around 100 μm. The selective emission peak of the Er203 coating occurs at 1550 nm, matching well with the GaSb cells. However, the radiative efficiency is not larger than that of the SiC emitter, because the non-convertible emission of 1.725-5 μm accounts for a large proportion of the total radiation power, especially at high temperature. Effective suppression of this band emission is essential to the improvement of the radiation efficiency of the emitter.