To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied....To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.展开更多
xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition ...xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition on relative density, microstructure and electric conductivity of cermets were investigated. The results show that relative densities ofxNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 473 K in nitrogen atmosphere are increased by 0.49%, 1.45% and 2.99% compared with those of the undoped BaO cermets, respectively. Moreover, the electric conductivities (21.98, 28.37 and 50.10 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 233 K are improved compared with those (18.70, 22.79 and 39.58 S/cm) of xNi/lONiO-NiFe2O4 cermets (x=5, 10, 17), respectively. This indicates that perhaps the addition of BaO or formation of BaFe204 and Ba2Fe2O5 has an active effect on electric conductivities ofxNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets.展开更多
The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was de...The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.展开更多
Pure hydroxyapatite(HAP)ceramic and HAP composite ceramic with B2O3 were prepared by isostatic press forming and pressureless sintering.The relationships between thermal decomposition ratio and mechanical properties...Pure hydroxyapatite(HAP)ceramic and HAP composite ceramic with B2O3 were prepared by isostatic press forming and pressureless sintering.The relationships between thermal decomposition ratio and mechanical properties for pure HAP ceramic and the composite ceramic were investigated by means of FTIR,X-ray diffraction and three-point bending method.The results indicate that the decomposition ratio of pure HAP ceramic increases with ascending the sintering temperature and nearly reaches 80%at 1 350?殆or the HAP composite ceramic,the thermal decomposition is inhibited obviously due to the addition of B2O3.The added B atoms incorporate into the crystal lattice of HAP to form solid solution,resulting in an enlargement in the crystal spacing and an improvement in the binding strength of HAP crystal cell.Thermal decomposition ratio of HAP decreases but bending strength and fracture toughness are enhanced for HAP composite ceramics.However,when the added B2O3 is more than 5%(mass fraction),HAP decomposition is promoted and a steady?-TCP is formed due to the fact that when B atoms with higher negative electricity are combined with O,sp2 and a full-air p are formed,and those voids have a strong trend to intake of the outer electrons.So,it is very possible to occupy the place where HAP loses OH - or PO4 3- .展开更多
The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully perf...The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully performed on AA1050 alloy samples at room temperature. To simulate the above mentioned processes, finite element analysis was carried out using the commercial elasto-plastic finite element analysis ABAQUS/Explicit Simulation. It is shown that load requirement for the TE process is lower than that for the FE process. The equivalent plastic strain calculated by the FEA proved that higher values of strain are imposed to the sample in the TE process. The strain distribution for the TE sample at the final stage of extrusion shows smoother strain gradient in comparison with the one produced by the FE process.展开更多
Darcy's law only applying to the flow domain is extended to the entire fracture network domain including the dry domain.The partial differential equation(PDE) formulation for unconfined seepage flow problems for d...Darcy's law only applying to the flow domain is extended to the entire fracture network domain including the dry domain.The partial differential equation(PDE) formulation for unconfined seepage flow problems for discrete fracture network is established,in which a boundary condition of Signorini's type is prescribed over the potential seepage surfaces.In order to reduce the difficulty in selecting trial functions,a new variational inequality formulation is presented and mathematically proved to be equivalent to the PDE formulation.The numerical procedure based on the VI formulation is proposed and the corresponding algorithm has been developed.Since a continuous penalized Heaviside function is introduced to replace a jump function in finite element analysis,oscillation of numerical integration for facture elements cut by the free surface is eliminated and stability of numerical solution is assured.The numerical results from two typical examples demonstrate,on the one hand the effectiveness and robustness of the proposed method,and on the other hand the capability of predicting main seepage pathways in fractured rocks and flow rates out of the drainage system,which is very important for performance assessments and design optimization of complex drainage system.展开更多
The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture ...The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture network seepage is obtained.Through introduction of the generalized Darcy's law,conservative equations for both fracture surface and fracture interactions are established.Combined with the boundary condition of Signorini's type,a partial differential equation(PDE) formulation is presented for the whole domain concerned.To solve this problem efficiently,an equivalent variational inequality(VI) formulation is given.With the penalized Heaviside function,a finite element procedure for unconfined seepage problem in 3D fracture network is developed.Through an example in a homogeneous rectangular dam,validity of the algorithm is verified.The analysis of an unconfined seepage problem in a complex fracture network shows that the proposed algorithm is very applicable to complex three-dimensional problems,and is effective in describing some interesting phenomenon usually encountered in practice,such as "preferential flow".展开更多
Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion coll...Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion collisions with isotopes,isobars and isotones are studied.The influence of nuclear symmetry potential energy on the balance energy is emphasized.It is found that the balance energy of free neutrons is sensitive to the nuclear symmetry energy,while that of free protons is not.Particularly,the initial neutron/proton ratio dependence of the balance energy of free neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy.展开更多
This contribution starts with the discussion on the classification of energy, and then the behaviors of various thermodynamic processes are analyzed, accompanying with the comparison of the adiabatic compression proce...This contribution starts with the discussion on the classification of energy, and then the behaviors of various thermodynamic processes are analyzed, accompanying with the comparison of the adiabatic compression process of an ideal gas and an elastic rod. All these analyses show that the internal energy of ideal gases exhibits the duality of thermal energy–mechanical energy, that is,the internal energy acts as the thermal energy during the isochoric process, while the internal energy acts as the mechanical energy during the isentropic process. Such behavior of the internal energy is quite different from other types of energy during the energy conversion process because the internal energy of ideal gases exhibits the duality of thermal energy–mechanical energy. Because of this duality, the internal energy of ideal gas is proposed to be refered to as thermodynamic energy rather than thermal energy as indicated in some literature, although it consists of kinetics of the microscopic random motion of particles and can be expressed as the function of temperature only.展开更多
All the possible equivalent barotropic (EB) laminar solutions are firstly explored,and all the possible non-EB elliptic circulations and hyperbolic laminar modes of rotating stratified fluids are discovered in this pa...All the possible equivalent barotropic (EB) laminar solutions are firstly explored,and all the possible non-EB elliptic circulations and hyperbolic laminar modes of rotating stratified fluids are discovered in this paper.The EB circulations (including the vortex streets and hurricane like vortices) possess rich structures,because either the arbitrary solutions of arbitrary nonlinear Poisson equations can be used or an arbitrary two-dimensional stream function is revealed which may be broadly applied in atmospheric and oceanic dynamics,plasma physics,astrophysics and so on.The discovery of the non-EB modes disproves a known conjecture.展开更多
This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone map...This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping by viscosity approximation methods in a Hilbert space.The authors showthat the iterative sequence converges strongly to a common element of the two sets,which solves somevariational inequality.Subsequently,the authors consider the problem of finding a common fixed pointof a nonexpansive mapping and a strictly pseudo-contractive mapping and the problem of finding acommon element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.The results obtained in this paper extend and improve the correspondingresults announced by Nakajo,Takahashi,and Toyoda.展开更多
基金Project(B08040)supported by the Program of Introducing Talents of Discipline to Universities(111 Project),ChinaProject(2009ZX04005-031-11)supported by the National Science and Technology Special Program,China
文摘To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.
基金Project(2005CB623703) supported by the National Basic Research Program of ChinaProject(50721003) supported by the National Natural Science Fund for Innovation Group of ChinaProject(2008AA030501) supported by the National High-Tech Research and Development Program of China
文摘xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition on relative density, microstructure and electric conductivity of cermets were investigated. The results show that relative densities ofxNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 473 K in nitrogen atmosphere are increased by 0.49%, 1.45% and 2.99% compared with those of the undoped BaO cermets, respectively. Moreover, the electric conductivities (21.98, 28.37 and 50.10 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 233 K are improved compared with those (18.70, 22.79 and 39.58 S/cm) of xNi/lONiO-NiFe2O4 cermets (x=5, 10, 17), respectively. This indicates that perhaps the addition of BaO or formation of BaFe204 and Ba2Fe2O5 has an active effect on electric conductivities ofxNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets.
基金the financial supports from the National Natural Science Foundation of China(No.52005244)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.18B285,18B552)+1 种基金the Natural Science Foundation of Hunan Provincial,China(Nos.2019JJ50510,2019JJ70077)Young Scholars Program of Furong Scholar Program,China.
文摘The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.
文摘Pure hydroxyapatite(HAP)ceramic and HAP composite ceramic with B2O3 were prepared by isostatic press forming and pressureless sintering.The relationships between thermal decomposition ratio and mechanical properties for pure HAP ceramic and the composite ceramic were investigated by means of FTIR,X-ray diffraction and three-point bending method.The results indicate that the decomposition ratio of pure HAP ceramic increases with ascending the sintering temperature and nearly reaches 80%at 1 350?殆or the HAP composite ceramic,the thermal decomposition is inhibited obviously due to the addition of B2O3.The added B atoms incorporate into the crystal lattice of HAP to form solid solution,resulting in an enlargement in the crystal spacing and an improvement in the binding strength of HAP crystal cell.Thermal decomposition ratio of HAP decreases but bending strength and fracture toughness are enhanced for HAP composite ceramics.However,when the added B2O3 is more than 5%(mass fraction),HAP decomposition is promoted and a steady?-TCP is formed due to the fact that when B atoms with higher negative electricity are combined with O,sp2 and a full-air p are formed,and those voids have a strong trend to intake of the outer electrons.So,it is very possible to occupy the place where HAP loses OH - or PO4 3- .
基金been conducted using research grants of Islamic Azad University,Shiraz Branch
文摘The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully performed on AA1050 alloy samples at room temperature. To simulate the above mentioned processes, finite element analysis was carried out using the commercial elasto-plastic finite element analysis ABAQUS/Explicit Simulation. It is shown that load requirement for the TE process is lower than that for the FE process. The equivalent plastic strain calculated by the FEA proved that higher values of strain are imposed to the sample in the TE process. The strain distribution for the TE sample at the final stage of extrusion shows smoother strain gradient in comparison with the one produced by the FE process.
基金supported by the National Natural Science Foundation of China (Grant No. 51079110)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB013506)
文摘Darcy's law only applying to the flow domain is extended to the entire fracture network domain including the dry domain.The partial differential equation(PDE) formulation for unconfined seepage flow problems for discrete fracture network is established,in which a boundary condition of Signorini's type is prescribed over the potential seepage surfaces.In order to reduce the difficulty in selecting trial functions,a new variational inequality formulation is presented and mathematically proved to be equivalent to the PDE formulation.The numerical procedure based on the VI formulation is proposed and the corresponding algorithm has been developed.Since a continuous penalized Heaviside function is introduced to replace a jump function in finite element analysis,oscillation of numerical integration for facture elements cut by the free surface is eliminated and stability of numerical solution is assured.The numerical results from two typical examples demonstrate,on the one hand the effectiveness and robustness of the proposed method,and on the other hand the capability of predicting main seepage pathways in fractured rocks and flow rates out of the drainage system,which is very important for performance assessments and design optimization of complex drainage system.
基金supported by the National Natural Science Foundation of China(Grant No.51079110)the National Basic Research Program of China("973"Project)(Grant No.2011CB013506)
文摘The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture network seepage is obtained.Through introduction of the generalized Darcy's law,conservative equations for both fracture surface and fracture interactions are established.Combined with the boundary condition of Signorini's type,a partial differential equation(PDE) formulation is presented for the whole domain concerned.To solve this problem efficiently,an equivalent variational inequality(VI) formulation is given.With the penalized Heaviside function,a finite element procedure for unconfined seepage problem in 3D fracture network is developed.Through an example in a homogeneous rectangular dam,validity of the algorithm is verified.The analysis of an unconfined seepage problem in a complex fracture network shows that the proposed algorithm is very applicable to complex three-dimensional problems,and is effective in describing some interesting phenomenon usually encountered in practice,such as "preferential flow".
基金supported by the National Natural Science Foundation of China(Grant Nos.10905021,10979023 and 11175074)the Zhejiang Provincial Natural Science Foundation of China(Grant No. Y6090210)the Qian-Jiang Talents Project of Zhejiang Province (Grant No.2010R10102)
文摘Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion collisions with isotopes,isobars and isotones are studied.The influence of nuclear symmetry potential energy on the balance energy is emphasized.It is found that the balance energy of free neutrons is sensitive to the nuclear symmetry energy,while that of free protons is not.Particularly,the initial neutron/proton ratio dependence of the balance energy of free neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy.
基金supported by the National Natural Science Foundation of China(51136001 and 51356001)Tsinghua University Initiative Scientific Research Program and Science Fund for Creative Research Groups(51321002)
文摘This contribution starts with the discussion on the classification of energy, and then the behaviors of various thermodynamic processes are analyzed, accompanying with the comparison of the adiabatic compression process of an ideal gas and an elastic rod. All these analyses show that the internal energy of ideal gases exhibits the duality of thermal energy–mechanical energy, that is,the internal energy acts as the thermal energy during the isochoric process, while the internal energy acts as the mechanical energy during the isentropic process. Such behavior of the internal energy is quite different from other types of energy during the energy conversion process because the internal energy of ideal gases exhibits the duality of thermal energy–mechanical energy. Because of this duality, the internal energy of ideal gas is proposed to be refered to as thermodynamic energy rather than thermal energy as indicated in some literature, although it consists of kinetics of the microscopic random motion of particles and can be expressed as the function of temperature only.
基金Project supported by the National Natural Science Foundation of China (Nos.11175092,10735030)the National Basic Research Program of China (973 Program) (No.2007CB814800)+1 种基金the Natural Science Foundation of Shanghai (No.09ZR1413600)the K.C.Wong Magna Fund of Ningbo University
文摘All the possible equivalent barotropic (EB) laminar solutions are firstly explored,and all the possible non-EB elliptic circulations and hyperbolic laminar modes of rotating stratified fluids are discovered in this paper.The EB circulations (including the vortex streets and hurricane like vortices) possess rich structures,because either the arbitrary solutions of arbitrary nonlinear Poisson equations can be used or an arbitrary two-dimensional stream function is revealed which may be broadly applied in atmospheric and oceanic dynamics,plasma physics,astrophysics and so on.The discovery of the non-EB modes disproves a known conjecture.
基金supported by the National Natural Science Foundation of China under Grant No. 10771050
文摘This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping by viscosity approximation methods in a Hilbert space.The authors showthat the iterative sequence converges strongly to a common element of the two sets,which solves somevariational inequality.Subsequently,the authors consider the problem of finding a common fixed pointof a nonexpansive mapping and a strictly pseudo-contractive mapping and the problem of finding acommon element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.The results obtained in this paper extend and improve the correspondingresults announced by Nakajo,Takahashi,and Toyoda.