Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion coll...Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion collisions with isotopes,isobars and isotones are studied.The influence of nuclear symmetry potential energy on the balance energy is emphasized.It is found that the balance energy of free neutrons is sensitive to the nuclear symmetry energy,while that of free protons is not.Particularly,the initial neutron/proton ratio dependence of the balance energy of free neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10905021,10979023 and 11175074)the Zhejiang Provincial Natural Science Foundation of China(Grant No. Y6090210)the Qian-Jiang Talents Project of Zhejiang Province (Grant No.2010R10102)
文摘Using the Ultrarelativistic Quantum Molecular Dynamics(UrQMD) model,the balance energies of free neutrons,free protons and Z=1 particles(including free protons,deuterons and tritons) from mass symmetric heavy-ion collisions with isotopes,isobars and isotones are studied.The influence of nuclear symmetry potential energy on the balance energy is emphasized.It is found that the balance energy of free neutrons is sensitive to the nuclear symmetry energy,while that of free protons is not.Particularly,the initial neutron/proton ratio dependence of the balance energy of free neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy.