Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressib...Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressibilities ( Ks^E ) were computed from speed of sound and density data, derived from molar excess volume data. The Ks^E values were analyzed by using graph theoretical approach. The Ks^E values evaluated by graph theory compared reasonably well with their corresponding experimental values. The Ks^E data were also expressed in terms of Redlich-Kister polynomial equation to derive the coefficients and the standard deviation.展开更多
In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning ele...In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) tests as well as the shear punch test were employed to study the quality and strength of the bond between the two alloys. It was found that the process temperature was an important factor affecting the level of interfacial bonding, such that increasing the temperature from 250 to 300℃ has improved the strength by 37% and the thickness of the bond between the layers by 4.5%. Moreover, this temperature rise reduced the maximum required forming load by 13%. However, the hardness tests showed that this increase in the process temperature resulted in 4% decrease in the hardness of the composite bar.展开更多
文摘Speed of sound data for butyl acetate+benzene, or toluene, or o-xylene, or m-xylene, or p-xylene binary mixtures have been measured over the entire range of mole fraction at 308.15 K. The excess isentropic compressibilities ( Ks^E ) were computed from speed of sound and density data, derived from molar excess volume data. The Ks^E values were analyzed by using graph theoretical approach. The Ks^E values evaluated by graph theory compared reasonably well with their corresponding experimental values. The Ks^E data were also expressed in terms of Redlich-Kister polynomial equation to derive the coefficients and the standard deviation.
文摘In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) tests as well as the shear punch test were employed to study the quality and strength of the bond between the two alloys. It was found that the process temperature was an important factor affecting the level of interfacial bonding, such that increasing the temperature from 250 to 300℃ has improved the strength by 37% and the thickness of the bond between the layers by 4.5%. Moreover, this temperature rise reduced the maximum required forming load by 13%. However, the hardness tests showed that this increase in the process temperature resulted in 4% decrease in the hardness of the composite bar.