An immersed umbilic-free submanifold in the unit sphere is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. In this paper, we give a complete clas...An immersed umbilic-free submanifold in the unit sphere is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. In this paper, we give a complete classification for all Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues.展开更多
A-manifolds and/3-manifolds, introduced by Gray (1978), are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an A-manifold an...A-manifolds and/3-manifolds, introduced by Gray (1978), are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an A-manifold and a B-manifold. The present paper proves that both focal submanifolds of each isoparametric hypersurface in unit spheres with g = 4 distinct principal curvatures are A-manifolds. As for the focal submanifolds with g = 6, m = 1 or 2, only one is an A-manifold, and neither is a B-manifold.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 10671181, 11071225)
文摘An immersed umbilic-free submanifold in the unit sphere is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. In this paper, we give a complete classification for all Blaschke isoparametric hypersurfaces with three distinct Blaschke eigenvalues.
基金supported by National Natural Science Foundation of China(Grant No.11301027)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130003120008)+1 种基金the Beijing Natural Science Foundation(Grant No.1144013)the Fundamental Research Funds for the Central Universities(Grant No.2012CXQT09)
文摘A-manifolds and/3-manifolds, introduced by Gray (1978), are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an A-manifold and a B-manifold. The present paper proves that both focal submanifolds of each isoparametric hypersurface in unit spheres with g = 4 distinct principal curvatures are A-manifolds. As for the focal submanifolds with g = 6, m = 1 or 2, only one is an A-manifold, and neither is a B-manifold.