In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures...In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.展开更多
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can indu...An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can induce higher overhaul maintenance costs. Variable precision rough set (VPRS) theory is used to determine the maintenance level of an aero-engine. According to the relationship between condition information and performance parameters of aero-engine modules, decision rules are established for reflecting the real condition of an aeroengine when its maintenance level needs to be determined. Finally, the CF6 engine is used as an example to illustrate the method to be effective.展开更多
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem...Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.展开更多
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain r...Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.展开更多
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM...As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.展开更多
An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each...An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.展开更多
The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
This report describes an equivalent doping profile transformation method with which the avalanche breakdown voltage of the asymmetric linearly graded junction was analytically predicted.The maximum breakdown voltage a...This report describes an equivalent doping profile transformation method with which the avalanche breakdown voltage of the asymmetric linearly graded junction was analytically predicted.The maximum breakdown voltage and the different depletion layer extension on the diffused side and substrate side are demonstrated in the report.The report shows the equivalent doping profile method is valid to predict the breakdown voltage of the complex P N junction.The analytical results agree with the experimental breakdown voltage in comparison with the abrupt junction and symmetric linearly graded junction approximations.展开更多
The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully perf...The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully performed on AA1050 alloy samples at room temperature. To simulate the above mentioned processes, finite element analysis was carried out using the commercial elasto-plastic finite element analysis ABAQUS/Explicit Simulation. It is shown that load requirement for the TE process is lower than that for the FE process. The equivalent plastic strain calculated by the FEA proved that higher values of strain are imposed to the sample in the TE process. The strain distribution for the TE sample at the final stage of extrusion shows smoother strain gradient in comparison with the one produced by the FE process.展开更多
Depending on analyzing the abuse of equivalent weights,a set of self-contained theory system on robust estimation based on equivalent variance-covariance is established,which includes ρ function, φ function,equivale...Depending on analyzing the abuse of equivalent weights,a set of self-contained theory system on robust estimation based on equivalent variance-covariance is established,which includes ρ function, φ function,equivalent variance-covariance function,influence function and breakdown point.And an example is given to verify that the robust models proposed in this paper are reliable and correct.展开更多
Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024,...Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.展开更多
The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and lo...The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel.展开更多
Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure...Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure on the processed billet.The plastic deformation behaviors of commercially pure aluminum during ECAEE-SC process were investigated using finite element analysis DEFORM-3D simulation software.The material flow,the load history,the distribution of effective strain and mean stress in the billet were analyzed in comparison with conventional equal channel angular extrusion(ECAE)process.In addition,single-pass ECAEE-SC was experimentally conducted on commercially pure aluminum at room temperature for validation,and the evolution of microstructure and microhardness of as-processed material was discussed.It was shown that during the process,the material is in the ideal hydrostatic stress state and the load requirement for ECAEE-SC is much more than that for ECAE.After a single-pass ECAEE-SC,an average strain of 3.51 was accumulated in the billet with homogeneous distribution.Moreover,the microstructure was significantly refined and composed of equiaxed ultrafine grains with sub-micron size.Considerable improvement in the average microhardness of aluminum was also found,which was homogenized and increased from HV 36.61 to HV 70.20,denoting 91.75%improvement compared with that of the as-cast billet.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
基金Project(52071343)supported by the National Natural Science Foundation of China。
文摘In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
文摘An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can induce higher overhaul maintenance costs. Variable precision rough set (VPRS) theory is used to determine the maintenance level of an aero-engine. According to the relationship between condition information and performance parameters of aero-engine modules, decision rules are established for reflecting the real condition of an aeroengine when its maintenance level needs to be determined. Finally, the CF6 engine is used as an example to illustrate the method to be effective.
基金Project(NCET-10-0364)supported by the Program for New Century Excellent Talents in University,ChinaProject(2012ZG0006)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51174095)supported the National Natural Science Foundation of China
文摘Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.
基金Projects(50871040,51271204) supported by the National Natural Science Foundation of ChinaProject(2012CB619500) supported by the National Basic Research Program of ChinaProject(NCET-06-0741) supported by the Program for New Century Excellent Talents, China
文摘Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.
基金Project(50871040)supported by the National Natural Science Foundation of ChinaProject(NCET-06-0741)supported by the Program for New Century Excellent Talents of China
文摘An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials.
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.
文摘This report describes an equivalent doping profile transformation method with which the avalanche breakdown voltage of the asymmetric linearly graded junction was analytically predicted.The maximum breakdown voltage and the different depletion layer extension on the diffused side and substrate side are demonstrated in the report.The report shows the equivalent doping profile method is valid to predict the breakdown voltage of the complex P N junction.The analytical results agree with the experimental breakdown voltage in comparison with the abrupt junction and symmetric linearly graded junction approximations.
基金been conducted using research grants of Islamic Azad University,Shiraz Branch
文摘The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully performed on AA1050 alloy samples at room temperature. To simulate the above mentioned processes, finite element analysis was carried out using the commercial elasto-plastic finite element analysis ABAQUS/Explicit Simulation. It is shown that load requirement for the TE process is lower than that for the FE process. The equivalent plastic strain calculated by the FEA proved that higher values of strain are imposed to the sample in the TE process. The strain distribution for the TE sample at the final stage of extrusion shows smoother strain gradient in comparison with the one produced by the FE process.
文摘Depending on analyzing the abuse of equivalent weights,a set of self-contained theory system on robust estimation based on equivalent variance-covariance is established,which includes ρ function, φ function,equivalent variance-covariance function,influence function and breakdown point.And an example is given to verify that the robust models proposed in this paper are reliable and correct.
基金research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work
文摘Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.
基金Projects(41072238,51009133)supported by the National Natural Science Foundation of China
文摘The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel.
基金Project(51905462)supported by the National Natural Science Foundation of ChinaProject(BK20200297)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(GDZB-127)supported by Jiangsu Provincial“Six Talent Peaks”Program,ChinaProject(2018202)supported by the“Youth Science and Technology Talents'Sponsored Program of Jiangsu Science and Technology Association,China。
文摘Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure on the processed billet.The plastic deformation behaviors of commercially pure aluminum during ECAEE-SC process were investigated using finite element analysis DEFORM-3D simulation software.The material flow,the load history,the distribution of effective strain and mean stress in the billet were analyzed in comparison with conventional equal channel angular extrusion(ECAE)process.In addition,single-pass ECAEE-SC was experimentally conducted on commercially pure aluminum at room temperature for validation,and the evolution of microstructure and microhardness of as-processed material was discussed.It was shown that during the process,the material is in the ideal hydrostatic stress state and the load requirement for ECAEE-SC is much more than that for ECAE.After a single-pass ECAEE-SC,an average strain of 3.51 was accumulated in the billet with homogeneous distribution.Moreover,the microstructure was significantly refined and composed of equiaxed ultrafine grains with sub-micron size.Considerable improvement in the average microhardness of aluminum was also found,which was homogenized and increased from HV 36.61 to HV 70.20,denoting 91.75%improvement compared with that of the as-cast billet.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.