[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorpti...[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorption to remove Hg(Ⅱ) in water solution to explore the influence to adsorption of Hg(Ⅱ) under different conditions,like pH solution,adsorption time,and Hg(Ⅱ).[Result] The experimental results show that when absorptivity of Hg(Ⅱ) by CWS reached the highest,pH ranged within 5.0-6.0.The adsorptivity decreased as initial Hg(Ⅱ) concentrations increased.Fourier Transform Infrared Spectroscopy(FTIR) spectrum revealed some chemical groups of CWS may affect the adsorption of Hg(Ⅱ),such as hydroxyl groups,methyl groups,aromatic methoxyl groups,unconjugated carbonyl,and typical aromatic ring,etc.Adsorption equation can be concluded considering the biosorption process relationship with Langmuir and Frendrich isotherm.[Conclusion] The study found that CW could be employed as a promising biosorption to remove Hg(Ⅱ) from aqueous environments.展开更多
In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and t...In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.展开更多
The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of ch...The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined.展开更多
The bopyrid isopod species Rhopalione sinensis Markham, 1990, is recorded for only the second time, from a new locality in China outside Hong Kong, the type-locality. This is also the first finding of the male R. sine...The bopyrid isopod species Rhopalione sinensis Markham, 1990, is recorded for only the second time, from a new locality in China outside Hong Kong, the type-locality. This is also the first finding of the male R. sinensis, which is herein described. Its host, Arcotheres sinensis (Shen, 1932) is a new record. A review of the four known species of Rhopalione Perez, 1920, an updated diagnosis of the genus and a key to species are provided.展开更多
Soy protein isolate/carboxymethyl chitosan (SPI/CMCH) blended films incorporated with glycerol were prepared using solution casting to investigate the effects of the SPI and CMCH ratios (100:0, 88:12, 67:33, 50...Soy protein isolate/carboxymethyl chitosan (SPI/CMCH) blended films incorporated with glycerol were prepared using solution casting to investigate the effects of the SPI and CMCH ratios (100:0, 88:12, 67:33, 50:50, 33:67, 12:88, 0:100) on the water sorption isotherm. The moisture sorption isotherm of the SPI/CMCH blended films was determined using various relative humidity's (16%, 35%, 55% and 76% RH) at 25 ± 1℃. The isotherms showed that the equilibrium moisture content (EMC) of the films increased with increasing CMCH content and the EMC value sharply increased above aw = 0.55. Understanding of sorption isotherms is important for prediction of moisture sorption properties of films via moisture sorption empirical models. The Guggenheim-Oswin, Brunauer-Emmett-Teller (BET), and Anderson-de Boer (GAB) sorption model predictions were tested against the experimental data. The root mean square (RMS) values from the Oswin, BET, and GAB models respectively ranged from 698.54 to 1,557.54, 38.85 to 58.30, and 52.52 to 95.95. Therefore, the BET model was found to be the best-fit model for SPI/CMCH blended films at 25 ± 1 ℃.展开更多
In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-pha...In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.展开更多
The effects of different defects on optical properties and plasmon resonances properties of Au nanoshell arrays were investigated by using the finite-difference time-domain(FDTD) theory.It is found that the optical pr...The effects of different defects on optical properties and plasmon resonances properties of Au nanoshell arrays were investigated by using the finite-difference time-domain(FDTD) theory.It is found that the optical properties of the nanoshell arrays are strongly influenced by different defects.We show that when the hollow Au nanoshell arrays are placed in air,there is a wide photonic band gap(PBG) in the infrared region,but the band gap becomes narrower as we introduced different defects.Based on the distributions of electric field component E z and the total energy distribution of the electric and the magnetic field,we show that there exhibit dipoles field distributions for the plasmon mode at the long-wavelength edge of the band gap,but composite higher order modes are excited at the short-wavelength edge of the band gap.The plasmon resonant modes also can be controlled by introducing defects.展开更多
Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-d...Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.展开更多
基金Supported by National Water Major Project of China (2008ZX07211-007)~~
文摘[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorption to remove Hg(Ⅱ) in water solution to explore the influence to adsorption of Hg(Ⅱ) under different conditions,like pH solution,adsorption time,and Hg(Ⅱ).[Result] The experimental results show that when absorptivity of Hg(Ⅱ) by CWS reached the highest,pH ranged within 5.0-6.0.The adsorptivity decreased as initial Hg(Ⅱ) concentrations increased.Fourier Transform Infrared Spectroscopy(FTIR) spectrum revealed some chemical groups of CWS may affect the adsorption of Hg(Ⅱ),such as hydroxyl groups,methyl groups,aromatic methoxyl groups,unconjugated carbonyl,and typical aromatic ring,etc.Adsorption equation can be concluded considering the biosorption process relationship with Langmuir and Frendrich isotherm.[Conclusion] The study found that CW could be employed as a promising biosorption to remove Hg(Ⅱ) from aqueous environments.
基金the National Natural Science Foundation of China(2117613621422603)the National Science and Technology Support Program of China(2011BAC06B01)
文摘In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.
文摘The performance of cross-linked magnetic chitosan, coated with magnetic fluids and cross-linked with ePichlorohydrin, was investigated for the adsorption of Copper (Ⅱ) from aqueous solutions. Infrared spectra of chitosan before and after modification showed that the coating and cross-linking are effective. Experiments were performed at different pH of solution and contact time, and appropriate conditions for the adsorption of Cu(Ⅱ) were determined. Experimental equilibrium data were correlated with Langmuir and Freundlich isotherms for determination of the adsorption potential. The results showed that the Langmuir isotherm was better compared with the Freundlich isotherm, and the uptake of Cu(Ⅱ) was 78.13 mg·g^- 1. The kinetics of adsorption corresponded with the first-order Langergren rate equation, and Langergren rate constants were determined.
基金Supported by the National Natural Science Foundation for Young Scientists of China(No.31101614)
文摘The bopyrid isopod species Rhopalione sinensis Markham, 1990, is recorded for only the second time, from a new locality in China outside Hong Kong, the type-locality. This is also the first finding of the male R. sinensis, which is herein described. Its host, Arcotheres sinensis (Shen, 1932) is a new record. A review of the four known species of Rhopalione Perez, 1920, an updated diagnosis of the genus and a key to species are provided.
文摘Soy protein isolate/carboxymethyl chitosan (SPI/CMCH) blended films incorporated with glycerol were prepared using solution casting to investigate the effects of the SPI and CMCH ratios (100:0, 88:12, 67:33, 50:50, 33:67, 12:88, 0:100) on the water sorption isotherm. The moisture sorption isotherm of the SPI/CMCH blended films was determined using various relative humidity's (16%, 35%, 55% and 76% RH) at 25 ± 1℃. The isotherms showed that the equilibrium moisture content (EMC) of the films increased with increasing CMCH content and the EMC value sharply increased above aw = 0.55. Understanding of sorption isotherms is important for prediction of moisture sorption properties of films via moisture sorption empirical models. The Guggenheim-Oswin, Brunauer-Emmett-Teller (BET), and Anderson-de Boer (GAB) sorption model predictions were tested against the experimental data. The root mean square (RMS) values from the Oswin, BET, and GAB models respectively ranged from 698.54 to 1,557.54, 38.85 to 58.30, and 52.52 to 95.95. Therefore, the BET model was found to be the best-fit model for SPI/CMCH blended films at 25 ± 1 ℃.
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period(No.2008BA-D94B09)the National Natural Science Foundation of China(No.30972289)
文摘In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.
基金supported by the Scientific Research Foundation of Hunan Provincial Education Department (Grant No.10C0658)the Natural Science Foundation of Hunan Provincial of China (Grant No.10JJ3088)+2 种基金the National Natural Science Foundation of China (Grant Nos.61107055 and 11164007)the Natural Science Foundation of Jiangsu Province of China (Grant No.BK2011229)the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No.10A026)
文摘The effects of different defects on optical properties and plasmon resonances properties of Au nanoshell arrays were investigated by using the finite-difference time-domain(FDTD) theory.It is found that the optical properties of the nanoshell arrays are strongly influenced by different defects.We show that when the hollow Au nanoshell arrays are placed in air,there is a wide photonic band gap(PBG) in the infrared region,but the band gap becomes narrower as we introduced different defects.Based on the distributions of electric field component E z and the total energy distribution of the electric and the magnetic field,we show that there exhibit dipoles field distributions for the plasmon mode at the long-wavelength edge of the band gap,but composite higher order modes are excited at the short-wavelength edge of the band gap.The plasmon resonant modes also can be controlled by introducing defects.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB328703)the National Natural Science Foundation of China(Grant Nos.11374026,91221304 and 11121091)
文摘Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.