In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced...In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced. Taking advantage of the relationship between Euler-Maclaurin formula and trapezoidal quadrature rule,and the relationship between trapezoidal and square quadrature rule,sharp computable bound with analytical form on the error of numerical integration of Bessel integral identity by square quadrature rule is derived in this paper. Numerical experiments are presented at the end to demonstrate the accuracy of the sharp computable bound on the numerical integration error.展开更多
文摘In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
基金the National Natural Science Foundation of China (No. 11074170)the Independent Research Program of State Key Laboratory of Machinery System and Vibration (SKLMSV) (No. MSV-MS-2008-05)the Visiting Scholar Program of SKLMSV (No. MSV-2009-06)
文摘In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced. Taking advantage of the relationship between Euler-Maclaurin formula and trapezoidal quadrature rule,and the relationship between trapezoidal and square quadrature rule,sharp computable bound with analytical form on the error of numerical integration of Bessel integral identity by square quadrature rule is derived in this paper. Numerical experiments are presented at the end to demonstrate the accuracy of the sharp computable bound on the numerical integration error.