An IGBT subcircuit model is proposed and optimized,which is fully SPICE compatible.Based on analytical equations describing the semiconductor device physics,the model parameters are extracted accurately from the measu...An IGBT subcircuit model is proposed and optimized,which is fully SPICE compatible.Based on analytical equations describing the semiconductor device physics,the model parameters are extracted accurately from the measured data without device destruction.The IGBT n - layer conductivity modulated resistor is effectively modeled as a voltage controlled resistor.The proposed model can be used to accurately predict the IGBT output I-V characteristics and low current gain etc.The simulation results are verified by the comparison with measurements and found to be in good agreement with them.The error in average is within 8%,which is better than the results of semi-mathematical models reported previously.展开更多
A novel tuning fork micromachined gyroscope, based on slide-film damping, is presented. The electrostatic driving gyroscope consists of two driving masses each of which supports one sensitive mass. The angular rate is...A novel tuning fork micromachined gyroscope, based on slide-film damping, is presented. The electrostatic driving gyroscope consists of two driving masses each of which supports one sensitive mass. The angular rate is sensed by the differential capacitances consisted of movable bar electrodes and fixed bar electrodes located on the glass wafer. The gyroscope can operate at atmospheric pressure with slide film damping in the driving and sensing directions, eliminate vacuum packaging and restrain cross-axis acceleration signal. The results of design and simulation show that the driving and sensing mode frequencies are 3 106 Hz and 3 175 Hz,respectively, and the Q-values in driving and sensitive modes are 1 721 and 1 450 respectively. The design resolution is 0.025°/s.展开更多
In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published w...In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.展开更多
According to the equivalent circuit model(ECM),finite element model(FEM) and physical experiment,the LIDEP force induced by the spatial variations of the phase of AC electric fields produced by the bright and dark reg...According to the equivalent circuit model(ECM),finite element model(FEM) and physical experiment,the LIDEP force induced by the spatial variations of the phase of AC electric fields produced by the bright and dark regions on the photoconductive layer was demonstrated.Besides,the phenomenon of the light-induced electro-rotation(LIER) caused by the light-induced rotating electric field was confirmed numerically and experimentally for the first time.It may be helpful to go out of the dilemma that only the dipole moment model,based on the effect of light-induced partial potentials,can be used for LIDEP theoretical calculation currently.Through the FEM simulation and the electro-rotating experiment of yeast cells,it was found that the direction of yeast's LIER is relevant to the distance between its location and the edge of optical electrode,and the spin velocity of LIER is inversely proportional to that distance.Nevertheless,the LIER torques in the three-electrode mode show a non-uniform distribution where the LIDEP forces are harmful for a particle spinning stably around a fixed axis.Moreover,a four-electrode double-layer mode was proposed for the first time and the finite element simulation results agreed with the expected design,suggesting a new way for the dielectric spectrum measurement based on LIER.展开更多
文摘An IGBT subcircuit model is proposed and optimized,which is fully SPICE compatible.Based on analytical equations describing the semiconductor device physics,the model parameters are extracted accurately from the measured data without device destruction.The IGBT n - layer conductivity modulated resistor is effectively modeled as a voltage controlled resistor.The proposed model can be used to accurately predict the IGBT output I-V characteristics and low current gain etc.The simulation results are verified by the comparison with measurements and found to be in good agreement with them.The error in average is within 8%,which is better than the results of semi-mathematical models reported previously.
文摘A novel tuning fork micromachined gyroscope, based on slide-film damping, is presented. The electrostatic driving gyroscope consists of two driving masses each of which supports one sensitive mass. The angular rate is sensed by the differential capacitances consisted of movable bar electrodes and fixed bar electrodes located on the glass wafer. The gyroscope can operate at atmospheric pressure with slide film damping in the driving and sensing directions, eliminate vacuum packaging and restrain cross-axis acceleration signal. The results of design and simulation show that the driving and sensing mode frequencies are 3 106 Hz and 3 175 Hz,respectively, and the Q-values in driving and sensitive modes are 1 721 and 1 450 respectively. The design resolution is 0.025°/s.
文摘In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No. 91023024)the New Century Elitist Program by Ministry of Education of China (Grant No.NCET-07-0180)the Technology Supported Research Program from Jiangsu Province (Grant No. BE2009054)
文摘According to the equivalent circuit model(ECM),finite element model(FEM) and physical experiment,the LIDEP force induced by the spatial variations of the phase of AC electric fields produced by the bright and dark regions on the photoconductive layer was demonstrated.Besides,the phenomenon of the light-induced electro-rotation(LIER) caused by the light-induced rotating electric field was confirmed numerically and experimentally for the first time.It may be helpful to go out of the dilemma that only the dipole moment model,based on the effect of light-induced partial potentials,can be used for LIDEP theoretical calculation currently.Through the FEM simulation and the electro-rotating experiment of yeast cells,it was found that the direction of yeast's LIER is relevant to the distance between its location and the edge of optical electrode,and the spin velocity of LIER is inversely proportional to that distance.Nevertheless,the LIER torques in the three-electrode mode show a non-uniform distribution where the LIDEP forces are harmful for a particle spinning stably around a fixed axis.Moreover,a four-electrode double-layer mode was proposed for the first time and the finite element simulation results agreed with the expected design,suggesting a new way for the dielectric spectrum measurement based on LIER.