We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded...We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.展开更多
The surface plasmonic effect and scattering effect of gold nanorods(AuNRs) on the performance of bulk heterojunction photovoltaic devices based on the blend of polythiophene and fullerene are investigated.AuNRs enhanc...The surface plasmonic effect and scattering effect of gold nanorods(AuNRs) on the performance of bulk heterojunction photovoltaic devices based on the blend of polythiophene and fullerene are investigated.AuNRs enhance the excitation since the plasmonic effect increases the electric field,mainly in the area near the interface between the active layer and AuNRs.The results show that the incident photo-to-electron conversion efficiency(IPCE) obviously increases for the device with a layer of gold nanorods,resulting from the plasmonic effect of AuNRs in the range of 500-670 nm and the scattering effect in the range of 370-410 nm.The power conversion efficiency(PCE) is increased by 7.6% due to the near field effect of the localized surface plasmons(LSP) of AuNRs and the scattering effect.The short circuit current density is also increased by 9.1% owing to the introduction of AuNRs.However,AuNRs can cause a little deterioration in open circuit voltage.展开更多
According to the plasma dispersion effect of silicon(Si),a silicon-on-insulator(SOI) based variable optical attenuator(VOA) with p-i-n lateral diode structure is demonstrated in this paper.A wire rib waveguide with su...According to the plasma dispersion effect of silicon(Si),a silicon-on-insulator(SOI) based variable optical attenuator(VOA) with p-i-n lateral diode structure is demonstrated in this paper.A wire rib waveguide with sub-micrometer cross section is adopted.The device is only about 2 mm long.The power consumption of the VOA is 76.3 mW(0.67 V,113.9 mA),and due to the carrier absorption,the polarization dependent loss(PDL) is 0.1dB at 20dB attenuation.The raise time of the VOA is 34.5 ns,the fall time is 37 ns,and the response time is 71.5 ns.展开更多
文摘以一款混联插电式混合动力汽车(Plug-in hybrid electric vehicle,PHEV)的燃油经济性为研究目标,为改善以等效因子为核心的等效燃油瞬时消耗最小策略(Equivalent fuel consumption minimization strategy,ECMS)的控制效果,考虑电池荷电状态(State of charge,SOC)、等效因子与燃油消耗的关系,构建等效因子全局优化模型;利用遗传算法离线优化一定工况下的等效因子S,得到不同电消耗续航行驶里程与电池SOC初始值的最佳等效因子MAP图,建立基于等效因子优化的ECMS能量管理策略,并考虑动力电池、电动机等部件的效率,获得最佳等效因子下的发动机、ISG电机、驱动电机的功率分配,并进行仿真与硬件在环试验,其中仿真结果表明,与未优化的等效因子相比,燃油经济性提高20.81%,硬件在环试验结果与仿真结果基本一致,表明所制定能量管理策略的有效性和可行性,进而为解决不同的行驶里程PHEV功率分配策略提供理论基础。
文摘We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61275175,61036007,61125505 and 60978061)Program for New Century Excellent Talents in University (Grant No.NCET-08-0717)+1 种基金National Science Foundation for Distinguished Young Scholars of China (Grant No. 61125505)the 111 Project of China(Grant No. B08002)
文摘The surface plasmonic effect and scattering effect of gold nanorods(AuNRs) on the performance of bulk heterojunction photovoltaic devices based on the blend of polythiophene and fullerene are investigated.AuNRs enhance the excitation since the plasmonic effect increases the electric field,mainly in the area near the interface between the active layer and AuNRs.The results show that the incident photo-to-electron conversion efficiency(IPCE) obviously increases for the device with a layer of gold nanorods,resulting from the plasmonic effect of AuNRs in the range of 500-670 nm and the scattering effect in the range of 370-410 nm.The power conversion efficiency(PCE) is increased by 7.6% due to the near field effect of the localized surface plasmons(LSP) of AuNRs and the scattering effect.The short circuit current density is also increased by 9.1% owing to the introduction of AuNRs.However,AuNRs can cause a little deterioration in open circuit voltage.
基金supported by the National High Technology Research and Development Program of China(No.2013AA031402)
文摘According to the plasma dispersion effect of silicon(Si),a silicon-on-insulator(SOI) based variable optical attenuator(VOA) with p-i-n lateral diode structure is demonstrated in this paper.A wire rib waveguide with sub-micrometer cross section is adopted.The device is only about 2 mm long.The power consumption of the VOA is 76.3 mW(0.67 V,113.9 mA),and due to the carrier absorption,the polarization dependent loss(PDL) is 0.1dB at 20dB attenuation.The raise time of the VOA is 34.5 ns,the fall time is 37 ns,and the response time is 71.5 ns.