Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024,...Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.展开更多
To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experi...To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.展开更多
A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hard...A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.展开更多
In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-direc...In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.展开更多
基金research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work
文摘Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.
基金Projects(51605388,51575449)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the "111" Project,China+1 种基金Project(131-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Open Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.
基金Project(2011CB706802)supported by the National Basic Research Program of ChinaProject(2012ZX04010-081)supported by National Science and Technology Major Program of China
文摘A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.
基金the research board of Sharif University of Technology, Iran, for the financial support and provision of the research facilities used for this work
文摘In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.