The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0...The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0°/45° weftless fabric lay-up and 0°/45° twill fabric lay-up, were quantitatively evaluated by performing the ablation tests with an engine torch. And their ablation discrepancies were analyzed according to the surface characteristic, porosity and thermal diffusivity. The results show that the 0°/45° weftless composite has a fiat eroded surface with no obvious macroscopic pits. Its thickness and mass erosion rates are decreased by about 46.8% and 34.8%, 25.0% and 27.5%, and 17.5% and 19.4% compared with those of the mat, the 0°/90° weftless and the 0°/45° twill composites, respectively. The ablation properties are mainly controlled by the thermo-chemical effect (oxidation), and a little by the thermo-mechanical effect (mechanical denudation). The needling fiber bundles play an important role in accelerating the ablation process and resulting in the heterogeneous ablation.展开更多
The present research is focused on the effects of standard heat treatment on the microstructure and mechanical properties of diffusion brazed IN-738 LC superalloy.Three distinct heat treatment cycles of full solution ...The present research is focused on the effects of standard heat treatment on the microstructure and mechanical properties of diffusion brazed IN-738 LC superalloy.Three distinct heat treatment cycles of full solution annealing,partial solution annealing,and aging treatment were applied to the bonded specimens,sequentially.The results reveal that bonding at 1120℃for 5 min leads to incomplete isothermal solidification and formation of eutectic phases including Ni-and Cr-rich borides in the joint centerline.Increasing the holding time to 45 min leads to the full isothermal solidification and formation of a nickel proeutectic solid-solution phase(γ)in the joints.The standard heat treatment of isothermally solidified and non-isothermally solidified specimens results in the complete elimination of the boride phases in the diffusion-affected zone and also the formation ofγ’precipitates in the isothermally solidified zone.However,discontinuously re-solidified products are observed in joint district in the non-isothermally solidified sample.The highest shear strength(~801 MPa)is achieved for isothermally solidified specimen after standard heat treatment;this strength is approximately 99%that of the substrate material.展开更多
The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(...The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and X-ray diffraction(XRD).The microhardness and shear strength were tested to investigate the mechanical properties of joint.The results showed that the interface was complete,and the joint was compact,uniform and free of unbonded defects.The maximum microhardness of joint was HV 443,higher than that of two base alloys,and the average shear strength of joint reached 172 MPa.It is concluded that a good metallurgical bonding between CuAgZn and GH909 can be obtained by HIP-DB with the process parameters of 700℃,150 MPa and 3 h.展开更多
基金Project(200202AA305207) supported by the National High Technology Research and Development Program of China
文摘The ablation properties of C/C composites with four different needled preforms prepared by isothermal chemical vapor infiltration (ICVI), which are super-thin mat lay-up, 0°/90° weftless fabric lay-up, 0°/45° weftless fabric lay-up and 0°/45° twill fabric lay-up, were quantitatively evaluated by performing the ablation tests with an engine torch. And their ablation discrepancies were analyzed according to the surface characteristic, porosity and thermal diffusivity. The results show that the 0°/45° weftless composite has a fiat eroded surface with no obvious macroscopic pits. Its thickness and mass erosion rates are decreased by about 46.8% and 34.8%, 25.0% and 27.5%, and 17.5% and 19.4% compared with those of the mat, the 0°/90° weftless and the 0°/45° twill composites, respectively. The ablation properties are mainly controlled by the thermo-chemical effect (oxidation), and a little by the thermo-mechanical effect (mechanical denudation). The needling fiber bundles play an important role in accelerating the ablation process and resulting in the heterogeneous ablation.
基金support from Ferdowsi University of Mashhad(FUM)under the research scheme(No.2/45210)。
文摘The present research is focused on the effects of standard heat treatment on the microstructure and mechanical properties of diffusion brazed IN-738 LC superalloy.Three distinct heat treatment cycles of full solution annealing,partial solution annealing,and aging treatment were applied to the bonded specimens,sequentially.The results reveal that bonding at 1120℃for 5 min leads to incomplete isothermal solidification and formation of eutectic phases including Ni-and Cr-rich borides in the joint centerline.Increasing the holding time to 45 min leads to the full isothermal solidification and formation of a nickel proeutectic solid-solution phase(γ)in the joints.The standard heat treatment of isothermally solidified and non-isothermally solidified specimens results in the complete elimination of the boride phases in the diffusion-affected zone and also the formation ofγ’precipitates in the isothermally solidified zone.However,discontinuously re-solidified products are observed in joint district in the non-isothermally solidified sample.The highest shear strength(~801 MPa)is achieved for isothermally solidified specimen after standard heat treatment;this strength is approximately 99%that of the substrate material.
基金The authors are grateful for the financial support from the Advanced Space Propulsion Technology Laboratory Open Fund,China(LabASP-2018-16).
文摘The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and X-ray diffraction(XRD).The microhardness and shear strength were tested to investigate the mechanical properties of joint.The results showed that the interface was complete,and the joint was compact,uniform and free of unbonded defects.The maximum microhardness of joint was HV 443,higher than that of two base alloys,and the average shear strength of joint reached 172 MPa.It is concluded that a good metallurgical bonding between CuAgZn and GH909 can be obtained by HIP-DB with the process parameters of 700℃,150 MPa and 3 h.