In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica (SiO2-WD70) and 9,10-dihydro-9-oxa-10-phospha- phenanthrene-10-oxide immobilized silica (SiO2-WD70-DOPO) nanoparticles were prepared. Sil...In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica (SiO2-WD70) and 9,10-dihydro-9-oxa-10-phospha- phenanthrene-10-oxide immobilized silica (SiO2-WD70-DOPO) nanoparticles were prepared. Silica, SiO2-WD70 and SiO2- WD70-DOPO were incorporated into polypropylene (PP) by melt compounding. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and polarized optical microscopy (POM) were employed to investigate the isothermal crystallization behavior of PP and PP/silica composites. The kinetic constant (kn), and half crystallization time (t1/2) were calculated by Avrami equation, while the surface free energy of folding was calculated by Lauritzen-Hoffman theory. The increased k,, decreased t1/2 and the surface free energy (ere) in the order ofPP, PP/SiO2, PP/SiO2-WD70 and PP/SiO2-WD70-DOPO nanocomposites were attributed to the surface modification of silica. XRD indicated that SiO2-WD70-DOPO addition had no effect on PP crystal structure but accelerated the crystallization rate. POM determined that SiO2-WD70-DOPO addition promoted the nucleation of PP by inducing a higher nucleation density during isothermal conditions. The surface modified nanoparticle SiO2-WD70-DOPO might find possible application as a new type of inorganic nano-sized nucleation agent for PP.展开更多
基金Project(50571005) supported by the National Natural Science Foundation of China.Acknowledgement The authors would like to thank ZH0U Chun-gen for prolitable discussion about SEM/EDS analysis.
基金supported by the National Natural Science Foundation of China(51133009)the National Basic Research Program of China(2012CB720304)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA09030200)
文摘In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica (SiO2-WD70) and 9,10-dihydro-9-oxa-10-phospha- phenanthrene-10-oxide immobilized silica (SiO2-WD70-DOPO) nanoparticles were prepared. Silica, SiO2-WD70 and SiO2- WD70-DOPO were incorporated into polypropylene (PP) by melt compounding. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and polarized optical microscopy (POM) were employed to investigate the isothermal crystallization behavior of PP and PP/silica composites. The kinetic constant (kn), and half crystallization time (t1/2) were calculated by Avrami equation, while the surface free energy of folding was calculated by Lauritzen-Hoffman theory. The increased k,, decreased t1/2 and the surface free energy (ere) in the order ofPP, PP/SiO2, PP/SiO2-WD70 and PP/SiO2-WD70-DOPO nanocomposites were attributed to the surface modification of silica. XRD indicated that SiO2-WD70-DOPO addition had no effect on PP crystal structure but accelerated the crystallization rate. POM determined that SiO2-WD70-DOPO addition promoted the nucleation of PP by inducing a higher nucleation density during isothermal conditions. The surface modified nanoparticle SiO2-WD70-DOPO might find possible application as a new type of inorganic nano-sized nucleation agent for PP.