The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spe...The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.展开更多
To understand the mechanism of fluoride removal from the simulated zinc sulfate solution by the La(III)-modified zeolite,the adsorbent was characterized by XRD,SEM and EDS.The effects of absorbent dose and contact tim...To understand the mechanism of fluoride removal from the simulated zinc sulfate solution by the La(III)-modified zeolite,the adsorbent was characterized by XRD,SEM and EDS.The effects of absorbent dose and contact time,the adsorption isotherms and the sorption kinetics were investigated.The experimental results were compatible with the Langmuir isotherm model.The theoretical maximum adsorption capacities are 20.83 and 23.04 mg/g at 303 and 313 K,respectively.And the physisorption is revealed using the Temkin isotherm model and the D-R isotherm model.The sorption process is more suitable by the pseudo-second-order kinetic models.Thermodynamic parameters such as standard free energy change(ΔGΘ<0 kJ/mol),standard enthalpy change(ΔHΘ=8.28 kJ/mol)and standard entropy change(ΔSΘ=0.030 kJ/(mol?K))indicate the spontaneity of adsorption and endothermic physical sorption.Furthermore,the fluoride concentration in the industrial zinc sulfate solution decreases from 98.05 to 44.09 mg/L with the adsorbent dosage of 15 g/L.展开更多
The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the...The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the adsorption process of W obeys the Freundlich model very well whereas the exchange process with Mo approximately follows the Henry model.The kinetic experiments show that the intraparticle diffusion process was the rate-determining step for W sorption on the resin,and the corresponding activation energy is calculated to be 21.976 k J/mol.展开更多
Carbonation decomposition of hydrogarnet is a significant reaction of the calcification-carbonation new method for alumina production by using low-grade bauxite.In this work,non-isothermal decomposition kinetics of hy...Carbonation decomposition of hydrogarnet is a significant reaction of the calcification-carbonation new method for alumina production by using low-grade bauxite.In this work,non-isothermal decomposition kinetics of hydrogarnet in sodium carbonate solution was studied by high-pressure differential scanning calorimetry(HPDSC) at different heating rates of 2,5,8,10,15 and 20 K·min^(-1),respectively.The activation energy(E_α) was calculated with the help of isoconversional method(model-free),and the reaction mechanism was determined by the differential equation method.The calculated activation energy of this reaction was 115.66 kJ·mol^(-1).Furthermore,the mechanism for decomposition reaction is Avrami-Erofeev(n=1.5),and the decomposition process is diffusion-controlled.展开更多
This study was focused on orthophosphate adsorption on natural zeolite which was obtained from South of Thailand and has been carried out by Vanadomolybdophosphoric Acid (VMPA) and using spectrophotometry technique....This study was focused on orthophosphate adsorption on natural zeolite which was obtained from South of Thailand and has been carried out by Vanadomolybdophosphoric Acid (VMPA) and using spectrophotometry technique. The phosphate solution were prepared artificially by adding certain quantities of KH2PO4 in water at the initial orthophosphate concentration of 5, 10 and 20 mg/L. While the adsorbent quantity was 1g of natural zeolite per 50 mL, aqueous solution NaOH IN and HCI IN solutions were used as pH regulators. The effect of equilibrium pH, adsorbent mass and contact time was studied. The results showed that natural zeolite adsorption efficiency was 99.18%, 99.33% and 99.02% (5, 10 and 20 mg/L), respectively, at pH of 12 and a contact time of 30 minutes at 298 K. Moreover, the isotherm can be used to evaluate the capacity and nature of the interaction between a sorbent and a sorbate. This work considers the Langmuir and Freundlich isotherm. Based on the R2 of adsorption isotherm studies, the adsorption data for phosphate fitted well the Freundlich isotherm for natural zeolite (R^2=0.99), with multi-layer adsorption. The results are in good agreement with recent experimentl data.展开更多
In this study, quaternized chitosan microspheres (QCMS) were prepared and its Cr (VI) removal potential was investigated. Batch experiments were conducted to examine kinetics, adsorption isotherm, pH effect, and t...In this study, quaternized chitosan microspheres (QCMS) were prepared and its Cr (VI) removal potential was investigated. Batch experiments were conducted to examine kinetics, adsorption isotherm, pH effect, and thermodynamic parameters. Equilibrium was attained within 50 rain and maximum removal of 97.34% was achieved under the optimum conditions at pH 5. Adsorption data for Cr (VI) uptake by the QCMS were analyzed according to Langmuir, Freundlich, and Temkin adsorption models. The maximum uptake of Cr (VI) was 39.1 mg.g-a. Thermodynamic parameters for the adsorption system were determinated at 293 K, 303 K, 313 K and 323 K. (AH° = 16.08 kJ.mol- 1;AG° = -5.84 to -8.08 kJ.mo1-1 and AS° = 74.81 J.K-1 .tool-l). So the positive values of both A/-F and AS° suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. AG° values obtained were negative indicating a spontaneous adsorp- tion process. The kinetic process was described by a pseudo-second-order rate equation very well. The results of the present study indicated that the QCMS could he considered as a potential adsorbent for Cr (V1) in aqueous solutions.展开更多
The adsorption ofEscherichia coli and Staphylococcus aureus on chaff and WMDP (waste of molasses dates production) has been studied. FTIR spectra were employed to investigate the adsorption ofEscherichia coli and St...The adsorption ofEscherichia coli and Staphylococcus aureus on chaff and WMDP (waste of molasses dates production) has been studied. FTIR spectra were employed to investigate the adsorption ofEscherichia coli and Staphylococcus aureus on surfaces. Adsorption of bacteria resulted in obvious shifts of some infrared bands of adsorbents. The adsorption isotherms ofEscherichia coli on two surfaces and Staphylococcus aureus on WMDP, are of L-curve type according to Giles classification. However, type H isotherm was observed in the adsorption of S. aureus on chaff. The adsorption isotherms of bacteria on the examined adsorbents conformed to the Langmuir and Temkin equations. The adsorption of bacteria was studied at different temperatures (10, 25 and 40 ℃), the thermodynamic parameters (AH, AS and AG) have also been calculated and it has been found that the adsorption process of bacteria was exothermic in nature. The number of bacteria adsorbed on surfaces was decreased with the increase of sodium chloride concentration. The amount of bacteria cells adsorbed was increased in the presence of different cations and followed the sequence: FeCl3 〉 CaCl2 〉 KCl 〉 NaCl. The pseudo-first order and pseudo-second order models for describing the kinetic data were applied and it was found that the process was well described by pseudo-second order model. The desorption studies indicated that the bacteria were strongly retained by two adsorbents.展开更多
文摘The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.
基金Projects(51474238,51674301)supported by the National Natural Science Foundation of China
文摘To understand the mechanism of fluoride removal from the simulated zinc sulfate solution by the La(III)-modified zeolite,the adsorbent was characterized by XRD,SEM and EDS.The effects of absorbent dose and contact time,the adsorption isotherms and the sorption kinetics were investigated.The experimental results were compatible with the Langmuir isotherm model.The theoretical maximum adsorption capacities are 20.83 and 23.04 mg/g at 303 and 313 K,respectively.And the physisorption is revealed using the Temkin isotherm model and the D-R isotherm model.The sorption process is more suitable by the pseudo-second-order kinetic models.Thermodynamic parameters such as standard free energy change(ΔGΘ<0 kJ/mol),standard enthalpy change(ΔHΘ=8.28 kJ/mol)and standard entropy change(ΔSΘ=0.030 kJ/(mol?K))indicate the spontaneity of adsorption and endothermic physical sorption.Furthermore,the fluoride concentration in the industrial zinc sulfate solution decreases from 98.05 to 44.09 mg/L with the adsorbent dosage of 15 g/L.
基金Project (2014CB643405) supported by National Research Development Program of China
文摘The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the adsorption process of W obeys the Freundlich model very well whereas the exchange process with Mo approximately follows the Henry model.The kinetic experiments show that the intraparticle diffusion process was the rate-determining step for W sorption on the resin,and the corresponding activation energy is calculated to be 21.976 k J/mol.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U1202274)the National Natural Science Foundation of China(51204040)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(201200421100 11)the Doctor Start-up Foundation in Taiyuan University of Science and Technology(20142001)
文摘Carbonation decomposition of hydrogarnet is a significant reaction of the calcification-carbonation new method for alumina production by using low-grade bauxite.In this work,non-isothermal decomposition kinetics of hydrogarnet in sodium carbonate solution was studied by high-pressure differential scanning calorimetry(HPDSC) at different heating rates of 2,5,8,10,15 and 20 K·min^(-1),respectively.The activation energy(E_α) was calculated with the help of isoconversional method(model-free),and the reaction mechanism was determined by the differential equation method.The calculated activation energy of this reaction was 115.66 kJ·mol^(-1).Furthermore,the mechanism for decomposition reaction is Avrami-Erofeev(n=1.5),and the decomposition process is diffusion-controlled.
文摘This study was focused on orthophosphate adsorption on natural zeolite which was obtained from South of Thailand and has been carried out by Vanadomolybdophosphoric Acid (VMPA) and using spectrophotometry technique. The phosphate solution were prepared artificially by adding certain quantities of KH2PO4 in water at the initial orthophosphate concentration of 5, 10 and 20 mg/L. While the adsorbent quantity was 1g of natural zeolite per 50 mL, aqueous solution NaOH IN and HCI IN solutions were used as pH regulators. The effect of equilibrium pH, adsorbent mass and contact time was studied. The results showed that natural zeolite adsorption efficiency was 99.18%, 99.33% and 99.02% (5, 10 and 20 mg/L), respectively, at pH of 12 and a contact time of 30 minutes at 298 K. Moreover, the isotherm can be used to evaluate the capacity and nature of the interaction between a sorbent and a sorbate. This work considers the Langmuir and Freundlich isotherm. Based on the R2 of adsorption isotherm studies, the adsorption data for phosphate fitted well the Freundlich isotherm for natural zeolite (R^2=0.99), with multi-layer adsorption. The results are in good agreement with recent experimentl data.
基金Supported by the National Key Basic Research Development Plan(No.2013CB632602)the National Natural Science Foundation of China(No.21306198)
文摘In this study, quaternized chitosan microspheres (QCMS) were prepared and its Cr (VI) removal potential was investigated. Batch experiments were conducted to examine kinetics, adsorption isotherm, pH effect, and thermodynamic parameters. Equilibrium was attained within 50 rain and maximum removal of 97.34% was achieved under the optimum conditions at pH 5. Adsorption data for Cr (VI) uptake by the QCMS were analyzed according to Langmuir, Freundlich, and Temkin adsorption models. The maximum uptake of Cr (VI) was 39.1 mg.g-a. Thermodynamic parameters for the adsorption system were determinated at 293 K, 303 K, 313 K and 323 K. (AH° = 16.08 kJ.mol- 1;AG° = -5.84 to -8.08 kJ.mo1-1 and AS° = 74.81 J.K-1 .tool-l). So the positive values of both A/-F and AS° suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. AG° values obtained were negative indicating a spontaneous adsorp- tion process. The kinetic process was described by a pseudo-second-order rate equation very well. The results of the present study indicated that the QCMS could he considered as a potential adsorbent for Cr (V1) in aqueous solutions.
文摘The adsorption ofEscherichia coli and Staphylococcus aureus on chaff and WMDP (waste of molasses dates production) has been studied. FTIR spectra were employed to investigate the adsorption ofEscherichia coli and Staphylococcus aureus on surfaces. Adsorption of bacteria resulted in obvious shifts of some infrared bands of adsorbents. The adsorption isotherms ofEscherichia coli on two surfaces and Staphylococcus aureus on WMDP, are of L-curve type according to Giles classification. However, type H isotherm was observed in the adsorption of S. aureus on chaff. The adsorption isotherms of bacteria on the examined adsorbents conformed to the Langmuir and Temkin equations. The adsorption of bacteria was studied at different temperatures (10, 25 and 40 ℃), the thermodynamic parameters (AH, AS and AG) have also been calculated and it has been found that the adsorption process of bacteria was exothermic in nature. The number of bacteria adsorbed on surfaces was decreased with the increase of sodium chloride concentration. The amount of bacteria cells adsorbed was increased in the presence of different cations and followed the sequence: FeCl3 〉 CaCl2 〉 KCl 〉 NaCl. The pseudo-first order and pseudo-second order models for describing the kinetic data were applied and it was found that the process was well described by pseudo-second order model. The desorption studies indicated that the bacteria were strongly retained by two adsorbents.