The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear t...The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear ternary compound(T phase),whose chemical formula is(Mg1-xZnx)11Ce.The range of Zn content in T phase is from 9.6% to 43.6%(molar fraction).The crystal structure of T phase is C-centered orthorhombic lattice with lattice parameters of a=0.96-1.029 nm,b=1.115-1.204 nm,c=0.940-1.015 nm.And the lattice parameters of T phase are decreasing a little with increasing Zn content.According to the results of composition and crystal structure,the maximal solubility of Zn in Mg12Ce is about 7.8%(molar fraction),and the chemical formula of the solid solution can be identified as(Mg1-xZnx)12Ce.The isothermal section of Mg-Zn-Ce system in Mg-rich corner at 400 ℃ was constructed.展开更多
The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and...The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted.展开更多
Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li...Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.展开更多
α‐,β‐,γ‐andδ‐MnO2catalysts were synthesized by a one‐step hydrothermal method,and were utilized for the catalytic oxidation of toluene in a combined plasma‐catalytic process.The relationship between catalyti...α‐,β‐,γ‐andδ‐MnO2catalysts were synthesized by a one‐step hydrothermal method,and were utilized for the catalytic oxidation of toluene in a combined plasma‐catalytic process.The relationship between catalytic performance and MnO2crystal structures was investigated.It was noted that the toluene removal efficiency was32.5%at the specific input energy of160J/L when non‐thermal plasma was used alone.Theα‐MnO2catalyst showed the best activity among the investigated catalysts,yielding a toluene conversion of78.1%at the specific input energy of160J/L.Forβ‐MnO2,γ‐MnO2andδ‐MnO2,removal efficiencies of47.4%,66.1%and50.0%,respectively,were achieved.By powder X‐ray diffraction,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy,Brunauer‐Emmett‐Teller,H2temperature‐programmed reduction and X‐ray photoelectron spectroscopy analyses,it was concluded that the tunnel structure,the stability of the crystal in plasma,the Mn-O bond strength of MnO2and the surface‐chemisorbed oxygen species played important roles in the plasma‐catalytic degradation of toluene.Additionally,the degradation routes of toluene in non‐thermal plasma and in the plasma‐catalytic process were also studied.It was concluded that the introduction of MnO2catalysts enabled O3,O2,electrons and radical species in the gas to be adsorbed on the MnO2surface via a facile interconversion among the Mn4+,Mn3+and Mn2+states.These four species could then be transported to the toluene or intermediate organic by‐products,which greatly improved the toluene removal efficiency and decreased the final output of by‐products.展开更多
Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. ...Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. According to the flow stress data obtained by compression tests, the deformation activations are calculated based on kinetics analysis of high temperature deformation, which are then used for deformation mechanism analysis combined with microstructure investigation. The results show that deformation mechanisms vary with deformation conditions: at low strain rate range, the deformation mechanism is mainly dislocation slip; at low temperature and high strain rate range, twinning is the main mechanism; at high temperature and high strain rate range, the deformation is mainly controlled by diffusion offl phase.展开更多
The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.P...The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.展开更多
After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa ar...After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.展开更多
The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculat...The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution,展开更多
In China's Mainland, the summer monsoon rainy band is referred to as the mei-yu precipitation front, which extends northward from South China to the Yangtze River, Huaihe River, and Yellow River, depending on the ...In China's Mainland, the summer monsoon rainy band is referred to as the mei-yu precipitation front, which extends northward from South China to the Yangtze River, Huaihe River, and Yellow River, depending on the season. This paper describes the structure of the mei-yu front associated with a persistent heavy rainfall event that occurred in the summer of 2007. The mei-yu front occurs when the subtropical oceanic warm, moist air mass and the extra tropical continental dry, cold air mass converge on the lee side of the Tibetan Plateau. The authors defined the equivalent temperature using two terms of dry-air temperature and the specific humidity and calculated its horizontal gradient to indicate the mei-yu front. The vertical structure of the mei-yu front and the moist thermal winds surrounding it were examined based on the equivalent temperature.展开更多
CCl4 (carbon tetrachloride) and n-C6H14 (n-hexane) sorption studies have been carried out on natural and dealuminated clinoptilolite-type zeolites. External surface area of the materials has been assessed using t...CCl4 (carbon tetrachloride) and n-C6H14 (n-hexane) sorption studies have been carried out on natural and dealuminated clinoptilolite-type zeolites. External surface area of the materials has been assessed using the αs-plots method. The high resolution αs-plots show that the isotherms are divided into four parts corresponding to adsorption in ultramicropores, intersections, supermicropores and external surface area, respectively. The mineralogies of natural zeolites are determined by X-ray analysis. N: low-pressure hysteresis loops, displayed by some substrata, are related to the micropore structure and to the ion-exchange treatment at which the natural precursors were subjected. The adsorption behavior of these substrata was examined in the range of relative pressures between 10^-5-1. Natural samples were used as reference materials to carry out the sorption analyses of the dealuminated samples. The effect of narrow micropore constrictions on the adsorption behavior of clinoptilolites was explored. The occurrence of a low-pressure hysteresis loop on the sorption isotherm of a modified sample is associated to the strong adsorption of the adsorbate molecules at the entrance of the necked-shape micropores, which interfere with the diffusion of the adsorbate molecules inside the porous structure.展开更多
A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal he...A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed. The results show that the microstructures of cast alloys consist of α-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds. After holding at 520 ℃ for 3 min, the phases of β-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures of α-Mg change from developed dendrites to irregular solid particles. With increasing the isothermal time, the amount of liquid increases, and the solid particles grow large and become spherical. When the holding time lasts for 20 min or even longer, the solid and liquid phases achieve a state of dynamic equilibrium.展开更多
A simple and effective method of testing ablation behaviors of carbon/carbon composites at high temperature was provided, which used plasma torch as the heater. The ablation resistance of 3D fine weave pierced carbon/...A simple and effective method of testing ablation behaviors of carbon/carbon composites at high temperature was provided, which used plasma torch as the heater. The ablation resistance of 3D fine weave pierced carbon/carbon composites at high temperature was also studied. The results show that temperature of the plasma flame is very high which is much closer to the real work environment of carbon/carbon composites. The factors that affect the ablation characters of carbon/carbon composites depend on both the properties of their components and the environmental conditions in which the material is placed. The ablation behaviors of C/C composites change from the center flame region predominantly influenced by sublimation of graphite to the region close to the outer flame influenced mainly by oxidization of graphite. The sublimation ability of carbon matrix is equal to that of carbon fibers but the oxidization ability of carbon fibers is significantly enhanced compared to that of carbon matrix.展开更多
Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were hea...Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were heat-treated at temperature varying from 1050 to 1 250oC for 2-20 h.The results show that obvious grain growth was found in both nanostructured and conventional thermal barrier coatings(TBCs)after high temperature heat treatment.Monoclinic/tetragonal phases were transformed into cubic phase in the agglomerated nano-powder after calcination.The cubic phase content increased with increasing calcination temperature.Calcination of the powder made the yttria distributed on the surface of the nanocrystalline particles dissolve in zirconia when grains grew.Different from the phase constituent of the as-sprayed conventional TBC which consisted of diffusionlesstransformed tetragonal,the as-sprayed nanostructured TBC consisted of cubic phase.展开更多
A series of sisal based activated carbon fibers were prepared with steam activation at temperature from 750℃ to 900℃. Their pore structures were characterized through their nitrogen adsorption isotherms at 77K using...A series of sisal based activated carbon fibers were prepared with steam activation at temperature from 750℃ to 900℃. Their pore structures were characterized through their nitrogen adsorption isotherms at 77K using different theories. The results showed that t-plot method and DR-plot method could suitably be used to characterize the mesopore structure and the multi-stage distribution of pore size of activated carbon fibers. It also showed that the pore size widens with the increase of activation temperature.展开更多
In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was ...In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.展开更多
The perfluorosulfonic acid (PFSA)/SiO2 composite catalysts were prepared by sol-gel method. Differences concerning pore structure analysis of PFSA/SiO2 catalysts were discussed on the basis of nitrogen adsorption. T...The perfluorosulfonic acid (PFSA)/SiO2 composite catalysts were prepared by sol-gel method. Differences concerning pore structure analysis of PFSA/SiO2 catalysts were discussed on the basis of nitrogen adsorption. Their surface area and pore size distributions were evaluated by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The nitrogen adsorption-desorption isotherms associated with adsorption hysteresis of PFSA/SiO2 catalysts were analyzed in detail. The adsorption isotherms of PFSA/SiOe catalysts belonged to Type IV isotherms accompanied by hysteresis loops of Type H1 for PFSA/SiO2 catalysts with content of 5%, 13% and 20% PFSA (PFSA-5, PFSA-13 and PFSA-20), and the hysteresis loop of Type H2 for PFSA/SiO2 catalyst with 40% PFSA content (PFSA-40). It indicated that PFSA-5, PFSA-13 and PFSA-20 catalysts had narrow pore size distributions and the well-defined cylindrical pores, while PFSA-40 catalyst had wide pore size distribution and inkbottle-like pores. The pore structure of PFSA-40 catalyst from the analysis of the hysteresis loop was not in agreement with that from BJH method. As an emendation for evaluation of pore size distributions of PFSA/SiOz catalysts, the comparison plots method was introduced, which was helpful to evaluate the pore structure of PFSA/SiO2 catalysts more factually.展开更多
The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation...The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied in two different Cartesian grids which were investigated by a grid independence study for RANS and a post-estimator for LES. The RNG k-ε turbulence model was used in RANS and dynamic Smagorinsky-Lilly model was used as the sub-grid scale model in LES. A validation study and cross comparison of ensemble average and root mean square (RMS) results showed LES outperforms RANS statistic results. Flow field results indicated that both approaches could capture dominant flow structures, like vortex breakdown (VB), and precessing vortex core (PVC). Streamlines indicate that the formation mechanisms of VB deducted from the two methods were different. The vorticity field was also studied using a velocity gradient based method. This research gained in-depth understanding of isothermal swirling flow.展开更多
The nitrogen adsorption isotherms at 77.69 K were measured for two samples of activated carbon fibers and their microstructures were investigated. Among established isotherm equations, the Dubinin-Radushkevieh equatio...The nitrogen adsorption isotherms at 77.69 K were measured for two samples of activated carbon fibers and their microstructures were investigated. Among established isotherm equations, the Dubinin-Radushkevieh equation showed the best agreement with the experimental data, while the Langmuir equation showed a large deviation when employed at low relative pressures. The MP method, t-method and as-method were used to analyze the pore size distribution. The calculated average pore widths and BET (Brunauer-Emmett-Teller) surface areas for the sample A-13 were 0.86 nm and 1 286.60 m^2/g, while for the sample A-16, they were 0.82 nm and 1 490.64 m^2/g. The sample with larger pore width was more suitable to be used as additive in chemical heat pumps, while the other one could be used as adsorbent in adsorption refrigeration systems .展开更多
基金Project(N110323017) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E2010001390) supported by the Natural Science Foundation of Hebei Province,China
文摘The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear ternary compound(T phase),whose chemical formula is(Mg1-xZnx)11Ce.The range of Zn content in T phase is from 9.6% to 43.6%(molar fraction).The crystal structure of T phase is C-centered orthorhombic lattice with lattice parameters of a=0.96-1.029 nm,b=1.115-1.204 nm,c=0.940-1.015 nm.And the lattice parameters of T phase are decreasing a little with increasing Zn content.According to the results of composition and crystal structure,the maximal solubility of Zn in Mg12Ce is about 7.8%(molar fraction),and the chemical formula of the solid solution can be identified as(Mg1-xZnx)12Ce.The isothermal section of Mg-Zn-Ce system in Mg-rich corner at 400 ℃ was constructed.
文摘The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted.
基金supported by the National Natural Science Foundation of China (51320105001, 51372190, 21573170, 51272199, 21433007)the National Basic Research Program of China (973 program, 2013CB632402)+2 种基金the Natural Science Foundation of Hubei Province (2015CFA001)the Fundamental Research Funds for the Central Universities (WUT: 2015-Ⅲ-034)Innovative Research Funds of SKLWUT (2015-ZD-1)~~
文摘Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.
基金supported by the National Key Research and Development Plan of China(2016YFC0204700)Zhejiang Provincial"151"Talents Program(2013)+2 种基金Key Project of Zhejiang Provincial Science and Technology Program,the Program for Zhejiang Leading Team of S&T Innovation(2013TD07)Special Program for Social Development of Key Science and Technology Project of Zhejiang Province(2014C03025)Changjiang Scholar Incentive Program(2009)~~
文摘α‐,β‐,γ‐andδ‐MnO2catalysts were synthesized by a one‐step hydrothermal method,and were utilized for the catalytic oxidation of toluene in a combined plasma‐catalytic process.The relationship between catalytic performance and MnO2crystal structures was investigated.It was noted that the toluene removal efficiency was32.5%at the specific input energy of160J/L when non‐thermal plasma was used alone.Theα‐MnO2catalyst showed the best activity among the investigated catalysts,yielding a toluene conversion of78.1%at the specific input energy of160J/L.Forβ‐MnO2,γ‐MnO2andδ‐MnO2,removal efficiencies of47.4%,66.1%and50.0%,respectively,were achieved.By powder X‐ray diffraction,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy,Brunauer‐Emmett‐Teller,H2temperature‐programmed reduction and X‐ray photoelectron spectroscopy analyses,it was concluded that the tunnel structure,the stability of the crystal in plasma,the Mn-O bond strength of MnO2and the surface‐chemisorbed oxygen species played important roles in the plasma‐catalytic degradation of toluene.Additionally,the degradation routes of toluene in non‐thermal plasma and in the plasma‐catalytic process were also studied.It was concluded that the introduction of MnO2catalysts enabled O3,O2,electrons and radical species in the gas to be adsorbed on the MnO2surface via a facile interconversion among the Mn4+,Mn3+and Mn2+states.These four species could then be transported to the toluene or intermediate organic by‐products,which greatly improved the toluene removal efficiency and decreased the final output of by‐products.
文摘Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. According to the flow stress data obtained by compression tests, the deformation activations are calculated based on kinetics analysis of high temperature deformation, which are then used for deformation mechanism analysis combined with microstructure investigation. The results show that deformation mechanisms vary with deformation conditions: at low strain rate range, the deformation mechanism is mainly dislocation slip; at low temperature and high strain rate range, twinning is the main mechanism; at high temperature and high strain rate range, the deformation is mainly controlled by diffusion offl phase.
文摘The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.
基金Project(2018BSHQYXMZZ32)supported by the Postdoctoral Science Foundation of Shaanxi Province of ChinaProject(20192109)supported by the State Key Laboratory for Mechanical Behavior of Materials,ChinaProjects(2017M623213,2018M633487)supported by the Postdoctoral Science Foundation of China
文摘After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.
基金Natural Science Foundation of Guangdong Province (No. 36566)
文摘The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution,
基金supported by the National Natural Science Foundation of China(Grant No.40975039)
文摘In China's Mainland, the summer monsoon rainy band is referred to as the mei-yu precipitation front, which extends northward from South China to the Yangtze River, Huaihe River, and Yellow River, depending on the season. This paper describes the structure of the mei-yu front associated with a persistent heavy rainfall event that occurred in the summer of 2007. The mei-yu front occurs when the subtropical oceanic warm, moist air mass and the extra tropical continental dry, cold air mass converge on the lee side of the Tibetan Plateau. The authors defined the equivalent temperature using two terms of dry-air temperature and the specific humidity and calculated its horizontal gradient to indicate the mei-yu front. The vertical structure of the mei-yu front and the moist thermal winds surrounding it were examined based on the equivalent temperature.
文摘CCl4 (carbon tetrachloride) and n-C6H14 (n-hexane) sorption studies have been carried out on natural and dealuminated clinoptilolite-type zeolites. External surface area of the materials has been assessed using the αs-plots method. The high resolution αs-plots show that the isotherms are divided into four parts corresponding to adsorption in ultramicropores, intersections, supermicropores and external surface area, respectively. The mineralogies of natural zeolites are determined by X-ray analysis. N: low-pressure hysteresis loops, displayed by some substrata, are related to the micropore structure and to the ion-exchange treatment at which the natural precursors were subjected. The adsorption behavior of these substrata was examined in the range of relative pressures between 10^-5-1. Natural samples were used as reference materials to carry out the sorption analyses of the dealuminated samples. The effect of narrow micropore constrictions on the adsorption behavior of clinoptilolites was explored. The occurrence of a low-pressure hysteresis loop on the sorption isotherm of a modified sample is associated to the strong adsorption of the adsorbate molecules at the entrance of the necked-shape micropores, which interfere with the diffusion of the adsorbate molecules inside the porous structure.
基金Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology Supporting Program of ChinaProject(2007KZ05)supported by the Science and Technology Supporting Project of Changchun City,China+1 种基金Project(2008)supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization,ChinaProject supported by the"985 Project"of Jilin University,China
文摘A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed. The results show that the microstructures of cast alloys consist of α-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds. After holding at 520 ℃ for 3 min, the phases of β-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures of α-Mg change from developed dendrites to irregular solid particles. With increasing the isothermal time, the amount of liquid increases, and the solid particles grow large and become spherical. When the holding time lasts for 20 min or even longer, the solid and liquid phases achieve a state of dynamic equilibrium.
文摘A simple and effective method of testing ablation behaviors of carbon/carbon composites at high temperature was provided, which used plasma torch as the heater. The ablation resistance of 3D fine weave pierced carbon/carbon composites at high temperature was also studied. The results show that temperature of the plasma flame is very high which is much closer to the real work environment of carbon/carbon composites. The factors that affect the ablation characters of carbon/carbon composites depend on both the properties of their components and the environmental conditions in which the material is placed. The ablation behaviors of C/C composites change from the center flame region predominantly influenced by sublimation of graphite to the region close to the outer flame influenced mainly by oxidization of graphite. The sublimation ability of carbon matrix is equal to that of carbon fibers but the oxidization ability of carbon fibers is significantly enhanced compared to that of carbon matrix.
基金Project(1343-77212)supported by the Innovation Program for Graduate Students of Central South University,China
文摘Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were heat-treated at temperature varying from 1050 to 1 250oC for 2-20 h.The results show that obvious grain growth was found in both nanostructured and conventional thermal barrier coatings(TBCs)after high temperature heat treatment.Monoclinic/tetragonal phases were transformed into cubic phase in the agglomerated nano-powder after calcination.The cubic phase content increased with increasing calcination temperature.Calcination of the powder made the yttria distributed on the surface of the nanocrystalline particles dissolve in zirconia when grains grew.Different from the phase constituent of the as-sprayed conventional TBC which consisted of diffusionlesstransformed tetragonal,the as-sprayed nanostructured TBC consisted of cubic phase.
基金Natural Science Foundation Committee of Chinese government (grant No. 50073029) and by Guangdong Provincial Natural Science Foundation (001276)
文摘A series of sisal based activated carbon fibers were prepared with steam activation at temperature from 750℃ to 900℃. Their pore structures were characterized through their nitrogen adsorption isotherms at 77K using different theories. The results showed that t-plot method and DR-plot method could suitably be used to characterize the mesopore structure and the multi-stage distribution of pore size of activated carbon fibers. It also showed that the pore size widens with the increase of activation temperature.
文摘In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.
基金supported by the National Basic Research Program of China (2003CB615705)Chemistry & Chemical Technology Research Center Plan of Shanghai Huayi Group Company (A200-8608 and A200-80726)
文摘The perfluorosulfonic acid (PFSA)/SiO2 composite catalysts were prepared by sol-gel method. Differences concerning pore structure analysis of PFSA/SiO2 catalysts were discussed on the basis of nitrogen adsorption. Their surface area and pore size distributions were evaluated by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The nitrogen adsorption-desorption isotherms associated with adsorption hysteresis of PFSA/SiO2 catalysts were analyzed in detail. The adsorption isotherms of PFSA/SiOe catalysts belonged to Type IV isotherms accompanied by hysteresis loops of Type H1 for PFSA/SiO2 catalysts with content of 5%, 13% and 20% PFSA (PFSA-5, PFSA-13 and PFSA-20), and the hysteresis loop of Type H2 for PFSA/SiO2 catalyst with 40% PFSA content (PFSA-40). It indicated that PFSA-5, PFSA-13 and PFSA-20 catalysts had narrow pore size distributions and the well-defined cylindrical pores, while PFSA-40 catalyst had wide pore size distribution and inkbottle-like pores. The pore structure of PFSA-40 catalyst from the analysis of the hysteresis loop was not in agreement with that from BJH method. As an emendation for evaluation of pore size distributions of PFSA/SiOz catalysts, the comparison plots method was introduced, which was helpful to evaluate the pore structure of PFSA/SiO2 catalysts more factually.
基金the financial support of DONG Energy [PSO2007-7333]
文摘The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied in two different Cartesian grids which were investigated by a grid independence study for RANS and a post-estimator for LES. The RNG k-ε turbulence model was used in RANS and dynamic Smagorinsky-Lilly model was used as the sub-grid scale model in LES. A validation study and cross comparison of ensemble average and root mean square (RMS) results showed LES outperforms RANS statistic results. Flow field results indicated that both approaches could capture dominant flow structures, like vortex breakdown (VB), and precessing vortex core (PVC). Streamlines indicate that the formation mechanisms of VB deducted from the two methods were different. The vorticity field was also studied using a velocity gradient based method. This research gained in-depth understanding of isothermal swirling flow.
基金the National Science Fund for Distinguished Young Scholars of China(No.50225621)the Shanghai Shuguang Training Program for the Talents (No.02GG03)the Natural Science Fund of Shanghai City(No.05ZR14072)
文摘The nitrogen adsorption isotherms at 77.69 K were measured for two samples of activated carbon fibers and their microstructures were investigated. Among established isotherm equations, the Dubinin-Radushkevieh equation showed the best agreement with the experimental data, while the Langmuir equation showed a large deviation when employed at low relative pressures. The MP method, t-method and as-method were used to analyze the pore size distribution. The calculated average pore widths and BET (Brunauer-Emmett-Teller) surface areas for the sample A-13 were 0.86 nm and 1 286.60 m^2/g, while for the sample A-16, they were 0.82 nm and 1 490.64 m^2/g. The sample with larger pore width was more suitable to be used as additive in chemical heat pumps, while the other one could be used as adsorbent in adsorption refrigeration systems .