The Grand Canonical Monte Carlo(GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues(quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adso...The Grand Canonical Monte Carlo(GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues(quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adsorption heat, adsorption isotherms, and adsorption sites of them were obtained. At the temperature ranging from 673.15 to 873.15 K, the Henry constant of quinoline homologues calculated on the FAU zeolite was applied to simulate their adsorption heat. And its value was more in accordance with the related data reported in the literature. The results showed that their isosteric heat decreased in the following order: 2,4-dimethyl quinoline(118.63 kJ/mol) > 2-methyl quinoline(110.45 kJ/mol) > quinoline(98 kJ/mol), and complied with the order of their adsorbate basicity. The competitive adsorption of three components of quinoline homologues on the FAU zeolite was calculated numerically at a temperature of 773.15 K and a pressure range of 0.1—100 MPa under the Universal force field. Their adsorption capacity decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The smaller the molecule size of the adsorbate, the greater the saturated adsorption capacity would be. It was found that the quinoline homologues could be adsorbed in the main channels of 12- membered-ring framework of the zeolite. Simultaneously, the influence of silica/alumina ratio on the adsorption property of quinoline homologues in FAU zeolite was studied. The smaller the silica/alumina ratio, the greater the isosteric heat and adsorption capacity would be.展开更多
The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupl...The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.展开更多
Idealized cycles of refrigerating machines with adiabatic and isothermal compression of refrigerant vapor were investigated. Energetic characteristics of cycles: specific mass and volume cooling capacity q0 and qv, w...Idealized cycles of refrigerating machines with adiabatic and isothermal compression of refrigerant vapor were investigated. Energetic characteristics of cycles: specific mass and volume cooling capacity q0 and qv, work of compression 1, refrigerating coefficient of performance e and power N for drive of compressor were compared. These characteristics were calculated for eight refrigerants at temperature of their condensation 30 ℃ and temperatures of boiling -15℃ and -30 ℃. The calculations show that the use of isothermal compression of refrigerant vapor ensures economy of energy during refrigerating machine operation.展开更多
The phase diagram of ZrO_(2)−CaO−TiO_(2)system was essential for the development of photocatalytic materials and refractory materials.In this work,the ZrO_(2)−CaO−TiO_(2)system was accessed by using the CALPHAD method...The phase diagram of ZrO_(2)−CaO−TiO_(2)system was essential for the development of photocatalytic materials and refractory materials.In this work,the ZrO_(2)−CaO−TiO_(2)system was accessed by using the CALPHAD method.The substitutional solution models were used to describe liquid and solid solution phases,the sub-lattice models were used to describe ternary compounds,and then the thermodynamic parameters were obtained by the least square method combined with literature experiment results.The acquired thermodynamic parameters were used to calculate the isothermal sections of the ZrO_(2)−CaO−TiO_(2)system at 1473 and 1673 K.There existed a good agreement between experimental and predicted phase relationships,the experimental points which were inconsistent with calculated results may be attributed to experimental errors and the sluggish kinetics of cations for ZrO_(2)-based materials.In order to further verify the validity of the database,the thermodynamic parameters were also used to simulate the thermodynamic properties(specific heat capacity,enthalpy,and entropy)of CaZrTi_(2)O_(7) within 5%errors.Good consistency demonstrated that the present thermodynamic database was self-consistent and credible.展开更多
文摘The Grand Canonical Monte Carlo(GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues(quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adsorption heat, adsorption isotherms, and adsorption sites of them were obtained. At the temperature ranging from 673.15 to 873.15 K, the Henry constant of quinoline homologues calculated on the FAU zeolite was applied to simulate their adsorption heat. And its value was more in accordance with the related data reported in the literature. The results showed that their isosteric heat decreased in the following order: 2,4-dimethyl quinoline(118.63 kJ/mol) > 2-methyl quinoline(110.45 kJ/mol) > quinoline(98 kJ/mol), and complied with the order of their adsorbate basicity. The competitive adsorption of three components of quinoline homologues on the FAU zeolite was calculated numerically at a temperature of 773.15 K and a pressure range of 0.1—100 MPa under the Universal force field. Their adsorption capacity decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The smaller the molecule size of the adsorbate, the greater the saturated adsorption capacity would be. It was found that the quinoline homologues could be adsorbed in the main channels of 12- membered-ring framework of the zeolite. Simultaneously, the influence of silica/alumina ratio on the adsorption property of quinoline homologues in FAU zeolite was studied. The smaller the silica/alumina ratio, the greater the isosteric heat and adsorption capacity would be.
基金Supported by the National Basic Research Program of China(2012CB025903)the National Natural Science Foundation of China(91434201,11402210)
文摘The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.
文摘Idealized cycles of refrigerating machines with adiabatic and isothermal compression of refrigerant vapor were investigated. Energetic characteristics of cycles: specific mass and volume cooling capacity q0 and qv, work of compression 1, refrigerating coefficient of performance e and power N for drive of compressor were compared. These characteristics were calculated for eight refrigerants at temperature of their condensation 30 ℃ and temperatures of boiling -15℃ and -30 ℃. The calculations show that the use of isothermal compression of refrigerant vapor ensures economy of energy during refrigerating machine operation.
基金the Open Project of State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy,China(No.SKLASS2019-11)the National Natural Science Foundation of China(No.52104305).
文摘The phase diagram of ZrO_(2)−CaO−TiO_(2)system was essential for the development of photocatalytic materials and refractory materials.In this work,the ZrO_(2)−CaO−TiO_(2)system was accessed by using the CALPHAD method.The substitutional solution models were used to describe liquid and solid solution phases,the sub-lattice models were used to describe ternary compounds,and then the thermodynamic parameters were obtained by the least square method combined with literature experiment results.The acquired thermodynamic parameters were used to calculate the isothermal sections of the ZrO_(2)−CaO−TiO_(2)system at 1473 and 1673 K.There existed a good agreement between experimental and predicted phase relationships,the experimental points which were inconsistent with calculated results may be attributed to experimental errors and the sluggish kinetics of cations for ZrO_(2)-based materials.In order to further verify the validity of the database,the thermodynamic parameters were also used to simulate the thermodynamic properties(specific heat capacity,enthalpy,and entropy)of CaZrTi_(2)O_(7) within 5%errors.Good consistency demonstrated that the present thermodynamic database was self-consistent and credible.