The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degen...The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degenerate linear damping coefficient is larger than it and the gas lies in a compact domain initially, then the regular solution will blow up in finite time; if the degenerate linear damping coefficient is less than it, then under some hvpotheses on the initial data. the regular solution exists globally.展开更多
The authors consider the local smooth solutions to the isentropic relativistic Euler equations in(3+1)-dimensional space-time for both non-vacuum and vacuum cases.The local existence is proved by symmetrizing the syst...The authors consider the local smooth solutions to the isentropic relativistic Euler equations in(3+1)-dimensional space-time for both non-vacuum and vacuum cases.The local existence is proved by symmetrizing the system and applying the FriedrichsLax-Kato theory of symmetric hyperbolic systems.For the non-vacuum case,according to Godunov,firstly a strictly convex entropy function is solved out,then a suitable symmetrizer to symmetrize the system is constructed.For the vacuum case,since the coefficient matrix blows-up near the vacuum,the authors use another symmetrization which is based on the generalized Riemann invariants and the normalized velocity.展开更多
基金Support by the Special Funds of State Major Basic Research Projects(Grant No.1999075107)Innovation Funds of AMSS,CAS of China+1 种基金Support by the Austrian government START-prize project"Nonlinear SchrSdingerQuantum Boltzmann Equations"(Y-137-TEC)
基金Project supported by the National Natural Science Foundation of China (No,10131050)the Science and Technology Committee Foundation of Shanghai (No.03JC14013).
文摘The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degenerate linear damping coefficient is larger than it and the gas lies in a compact domain initially, then the regular solution will blow up in finite time; if the degenerate linear damping coefficient is less than it, then under some hvpotheses on the initial data. the regular solution exists globally.
基金supported by the National Natural Science Foundation of China(Nos.11201308,10971135)the Science Foundation for the Excellent Youth Scholars of Shanghai Municipal Education Commission(No.ZZyyy12025)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(No.13zz136)the Science Foundation of Yin Jin Ren Cai of Shanghai Institute of Technology(No.YJ2011-03)
文摘The authors consider the local smooth solutions to the isentropic relativistic Euler equations in(3+1)-dimensional space-time for both non-vacuum and vacuum cases.The local existence is proved by symmetrizing the system and applying the FriedrichsLax-Kato theory of symmetric hyperbolic systems.For the non-vacuum case,according to Godunov,firstly a strictly convex entropy function is solved out,then a suitable symmetrizer to symmetrize the system is constructed.For the vacuum case,since the coefficient matrix blows-up near the vacuum,the authors use another symmetrization which is based on the generalized Riemann invariants and the normalized velocity.