The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o...In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.展开更多
Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and...Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances.展开更多
Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-borin...Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-boring machine(TBM)cutter-head and the assembled radius layout of the disc cutters.To solve these problems,an adaptive design method for studying cutter layout was proposed.Taking the bearing stress of the outermost gage disc cutter as an index,the profile of the cutter-head was determined.Using a genetic algorithm and based on the principles of equal life and equal wear,the assembled radii of the cutters were optimally designed.Boundary conditions of non-interference between the cutters,manholes,muck buckets and welding lines were given when a star layout pattern was used on cutters.The cutter-head comprehensive evaluation model was established by adopting relative optimization improvement degree of evaluation indices to achieve dimensional consistency.Exemplifying the MB264-311-8030 mm tape TBM cutter-head,the calculations show that compared with the original layout scheme,among the 51 disc cutters,the largest gap of the cutters’assembled radiuses is only 25.8 mm,which is 0.64%of the cutter-head’s radius and is negligible.The cutter-head’s unbalanced radial force decreases by 62.41%,the overturning moment decreases by 33.22%,and the cutter group’s centroid shift increases by only 18.48%.Each index is better than or approximately equal to the original cutter-head layout scheme,and the equivalent stress and deformation are both smaller;these results fully verify the feasibility and effectiveness of the method.展开更多
This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an eq...This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.展开更多
The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the ...The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications.展开更多
This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based ele...This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based electrolyte with and without the presence of 5 g/L clay particles.The structure and composition of the coatings were evaluated using SEM,EDS and XRD.The wear investigations were conducted using a ball-on-disk tribometer at 2,5 and 10 N loads.The corrosion behavior of the coatings was examined using polarization and EIS tests in 0.5 wt.%NaCl.The results revealed that the addition of clay particles deteriorated the wear resistance of the coatings under the loads of 5 and 10 N.The SEM examinations of the worn surfaces indicated that a combination of adhesive and abrasive wear mechanisms was activated for the coating with clay particles.The poor wear performance of the clay-incorporated coating was related to its lower adhesion strength and higher roughness.The potentiodynamic polarization examinations revealed that the addition of clay particles slightly decreased the corrosion rate of the coatings.Corrosion resistance of the clay-containing coating was attributed to its compactness,as indicated by the results of EIS tests.展开更多
The tribological properties of isostatic graphite and carbon graphite under dry sliding and water lubricated conditions were studied.The friction test was conducted by using a pin-on-disc tribometer.The friction coeff...The tribological properties of isostatic graphite and carbon graphite under dry sliding and water lubricated conditions were studied.The friction test was conducted by using a pin-on-disc tribometer.The friction coefficient and the wear rate were employed to evaluate the tribological performances of the two materials,and wear morphology was used to analyze the wear mechanism.The results show that the friction coefficient of the isostatic graphite is larger than that of the carbon graphite under the dry sliding condition,and the wear rate is lower than that of the carbon graphite.Under the water lubricated condition,the friction coefficients and the wear rates of the isostatic graphite decrease obviously.The main wear form of the isostatic graphite is abrasive wear,while the main wear form of the carbon graphite is spalling wear.Finally,the tribological mechanism of the isostatic graphite under dry sliding and water lubricated conditions were systematically analyzed.展开更多
Isostatic graphite materials with 8%porosity and 14%porosity were prepared by the cold isostatic pressing process.Cavitation erosion resistance of the isostatic graphite was evaluated through cavitation tests in an ul...Isostatic graphite materials with 8%porosity and 14%porosity were prepared by the cold isostatic pressing process.Cavitation erosion resistance of the isostatic graphite was evaluated through cavitation tests in an ultrasonic vibration system.The volume loss and erosion morphology of the isostatic graphite were adopted to investigate the cavitation erosion resistance of the isostatic graphite.The cavitation test results show that after ultrasonic vibration of 14 h,the volume loss of the isostatic graphite materials with 8%porosity and 14%porosity are 35%and 46%of the carbon graphite material,respectively.The isostatic graphite material with 8%porosity exhibits an outstanding capability to resist cavitation erosion damage,and the cavitation erosion resistance of the isostatic graphite enhances with the decrease in porosity.The damage mechanism of isostatic graphite is brittle fracture attributed to the shock wave and micro jet.The isostatic graphite with low porosity exhibits excellent cavitation erosion resistance due to its fine graphite particles,homogeneous structure and high degree of hardness.展开更多
Severe production conditions in coal mines cause damage and failure problems with the oriented sliding boots of the mechanical shearer. Wear has been an especially vexing problem. Plasma cladding methods were used to ...Severe production conditions in coal mines cause damage and failure problems with the oriented sliding boots of the mechanical shearer. Wear has been an especially vexing problem. Plasma cladding methods were used to study optimized sliding boot design. By cladding the substrate steel the surface may be made of a material more resistant to wear. The iron based alloy Cr4MnTi was coated onto a modified 45 steel matrix material in these tests. The results show that the alloy cladding layer is high strength, has high hardness, and is highly resistant to wear. After hardening and tempering, 45 steel substrate has great tenacity so the combined structure meets the performance requirements for the construction of shearer sliding boots.展开更多
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
文摘In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.
基金Projects(51071066,51671084)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0172)supported by the Program for New Century Excellent Talents in University,Ministry of Education,China
文摘Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances.
基金Projects(51275339,51575379,51675374)supported by the National Natural Science Foundation of ChinaProject(2013CB035402)supported by the National Hi-tech Research and Development Program of China
文摘Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-boring machine(TBM)cutter-head and the assembled radius layout of the disc cutters.To solve these problems,an adaptive design method for studying cutter layout was proposed.Taking the bearing stress of the outermost gage disc cutter as an index,the profile of the cutter-head was determined.Using a genetic algorithm and based on the principles of equal life and equal wear,the assembled radii of the cutters were optimally designed.Boundary conditions of non-interference between the cutters,manholes,muck buckets and welding lines were given when a star layout pattern was used on cutters.The cutter-head comprehensive evaluation model was established by adopting relative optimization improvement degree of evaluation indices to achieve dimensional consistency.Exemplifying the MB264-311-8030 mm tape TBM cutter-head,the calculations show that compared with the original layout scheme,among the 51 disc cutters,the largest gap of the cutters’assembled radiuses is only 25.8 mm,which is 0.64%of the cutter-head’s radius and is negligible.The cutter-head’s unbalanced radial force decreases by 62.41%,the overturning moment decreases by 33.22%,and the cutter group’s centroid shift increases by only 18.48%.Each index is better than or approximately equal to the original cutter-head layout scheme,and the equivalent stress and deformation are both smaller;these results fully verify the feasibility and effectiveness of the method.
基金The Mexican Council of Science and Technology (CONACYT) for the support received under the scholarship (449474)
文摘This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.
基金Project(51404302)supported by the National Natural Science Foundation of China
文摘The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications.
文摘This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based electrolyte with and without the presence of 5 g/L clay particles.The structure and composition of the coatings were evaluated using SEM,EDS and XRD.The wear investigations were conducted using a ball-on-disk tribometer at 2,5 and 10 N loads.The corrosion behavior of the coatings was examined using polarization and EIS tests in 0.5 wt.%NaCl.The results revealed that the addition of clay particles deteriorated the wear resistance of the coatings under the loads of 5 and 10 N.The SEM examinations of the worn surfaces indicated that a combination of adhesive and abrasive wear mechanisms was activated for the coating with clay particles.The poor wear performance of the clay-incorporated coating was related to its lower adhesion strength and higher roughness.The potentiodynamic polarization examinations revealed that the addition of clay particles slightly decreased the corrosion rate of the coatings.Corrosion resistance of the clay-containing coating was attributed to its compactness,as indicated by the results of EIS tests.
基金The National Natural Science Foundation of China(No.51635004,11472078)。
文摘The tribological properties of isostatic graphite and carbon graphite under dry sliding and water lubricated conditions were studied.The friction test was conducted by using a pin-on-disc tribometer.The friction coefficient and the wear rate were employed to evaluate the tribological performances of the two materials,and wear morphology was used to analyze the wear mechanism.The results show that the friction coefficient of the isostatic graphite is larger than that of the carbon graphite under the dry sliding condition,and the wear rate is lower than that of the carbon graphite.Under the water lubricated condition,the friction coefficients and the wear rates of the isostatic graphite decrease obviously.The main wear form of the isostatic graphite is abrasive wear,while the main wear form of the carbon graphite is spalling wear.Finally,the tribological mechanism of the isostatic graphite under dry sliding and water lubricated conditions were systematically analyzed.
基金The National Natural Science Foundation of China(No.51635004,11472078)。
文摘Isostatic graphite materials with 8%porosity and 14%porosity were prepared by the cold isostatic pressing process.Cavitation erosion resistance of the isostatic graphite was evaluated through cavitation tests in an ultrasonic vibration system.The volume loss and erosion morphology of the isostatic graphite were adopted to investigate the cavitation erosion resistance of the isostatic graphite.The cavitation test results show that after ultrasonic vibration of 14 h,the volume loss of the isostatic graphite materials with 8%porosity and 14%porosity are 35%and 46%of the carbon graphite material,respectively.The isostatic graphite material with 8%porosity exhibits an outstanding capability to resist cavitation erosion damage,and the cavitation erosion resistance of the isostatic graphite enhances with the decrease in porosity.The damage mechanism of isostatic graphite is brittle fracture attributed to the shock wave and micro jet.The isostatic graphite with low porosity exhibits excellent cavitation erosion resistance due to its fine graphite particles,homogeneous structure and high degree of hardness.
基金Financial support for this work, provided by the fundingsupport: the National Natural Science Foundation General Projects(No. 51075387)the National "Eleventh Five-Year" Plan Major Projects supported by the National Science and Technology (No.2008BAB36B02)
文摘Severe production conditions in coal mines cause damage and failure problems with the oriented sliding boots of the mechanical shearer. Wear has been an especially vexing problem. Plasma cladding methods were used to study optimized sliding boot design. By cladding the substrate steel the surface may be made of a material more resistant to wear. The iron based alloy Cr4MnTi was coated onto a modified 45 steel matrix material in these tests. The results show that the alloy cladding layer is high strength, has high hardness, and is highly resistant to wear. After hardening and tempering, 45 steel substrate has great tenacity so the combined structure meets the performance requirements for the construction of shearer sliding boots.