目的探讨工作气压对管内等离子体放电光学现象以及Si/O-DLC(Si and O Incorporated DLC,Si/O-DLC)薄膜结构与性能的影响,为获得管内高质量、均匀的Si/O-DLC薄膜制备工艺技术提供指导。方法利用空心阴极等离子体增强化学气相沉积(Hollow ...目的探讨工作气压对管内等离子体放电光学现象以及Si/O-DLC(Si and O Incorporated DLC,Si/O-DLC)薄膜结构与性能的影响,为获得管内高质量、均匀的Si/O-DLC薄膜制备工艺技术提供指导。方法利用空心阴极等离子体增强化学气相沉积(Hollow Cathode Plasma Enhanced Chemical Vapor Deposition,HC-PECVD)技术,通过改变工作气压在管内沉积Si/O-DLC薄膜。利用高速摄像机记录并对比不同工作气压下管内等离子体放电光学现象。通过SPM、XPS和Raman光谱仪表征不同工作气压下薄膜的三维立体表面形貌和微观结构,并利用SEM、纳米压痕仪以及划痕测试系统,对比研究管内Si/O-DLC薄膜的硬度、弹性模量、膜基结合力以及沿管轴向的薄膜厚度分布。结果随着工作气压的上升,管径向中心处亮斑面积和光强先增大增强后趋于缩小暗淡。在不同工作气压下,均能够在管内获得表面光滑的Si/O-DLC薄膜,粗糙度为3~10 nm。随着工作气压的上升,管内Si/O-DLC薄膜的平均厚度从1.42μm增大到2.06μm,且沿管轴向的薄膜厚度分布均匀度从24%显著提高到65%;不同工作气压下管内Si/O-DLC薄膜沿管轴向平均硬度呈先增大后减小的趋势,总体平均硬度可达(14±1)GPa。管内Si/O-DLC薄膜在工作气压上升到25 mTorr时获得较高的平均膜基结合力。结论改变工作气压能够显著影响管内壁Si/O-DLC薄膜的结构与性能,当工作气压为25 m Torr时,在管内获得均匀性最优、结合力较高的Si/O-DLC薄膜。展开更多
Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique...Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique for chemical analysis, yet its application to EC reactions is hindered by the strong attenuation of infrared (IR) light in both electrodes and electrolytes. Here we demonstrate that by incorporating appropriate sub-wavelength plasmonic structures at the metal electrode, the IR field at the EC interface can be greatly enhanced via the excitation of surface plasmon. This scheme facilitates in situ vibrational spectroscopic studies, especially using the surface-specific sum-frequency generation technique.展开更多
In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas o...In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.展开更多
The goal of this paper is to explore the relationship between the inorganic elemental fingerprint and the geographical origin identification ofMeretricis concha, which is a commonly used marine traditional Chinese med...The goal of this paper is to explore the relationship between the inorganic elemental fingerprint and the geographical origin identification ofMeretricis concha, which is a commonly used marine traditional Chinese medicine (TCM) for the treatment of asthma and scald bums. For that, the inorganic elemental contents ofMeretricis concha from five sampling points in Jiaozhou Bay have been determined by means of inductively coupled plasma optical emission spectrometry, and the comparative investigations based on the contents of 14 inorganic elements (A1, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn) of the samples from Jiaozhou Bay and the previous reported Rushan Bay were performed. It has been found that the samples from the two bays are ap- proximately classified into two kinds using hierarchical cluster analysis, and a four-factor model based on principle component analysis could explain approximately 75% of the detection data, also linear discriminant analysis can be used to develop a prediction model to distinguish the samples from Jiaozhou Bay and Rushan Bay with accuracy of about 93%. The results of the present investi- gation suggested that the inorganic elemental fingerprint based on the combination of the measured elemental content and chemom- etric analysis is a promising approach for verifying the geographical origin ofMeretricis concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.展开更多
The synergistic effect of high voltage discharge non‐thermal plasma(NTP)and photocatalysts on contaminant removal has repeatedly confirmed by plenty of researches.Most previous plasma‐photocatalyst synergistic syste...The synergistic effect of high voltage discharge non‐thermal plasma(NTP)and photocatalysts on contaminant removal has repeatedly confirmed by plenty of researches.Most previous plasma‐photocatalyst synergistic systems focused on the utilization of the ultraviolet light but ignored the visible light generated by high voltage discharge.Graphitic carbon nitride(g‐C3N4),a metal‐free semiconductor that exhibits high chemical stability,can utilize both the ultraviolet and visible light from high voltage discharge.However,the synergistic system of NTP and g‐C3N4 has been researched little.In this paper,the effect of NTP generated by dielectric barrier discharge(DBD)on g‐C3N4 is studied by comparing the photocatalytic activities,the surface physical structure and the surface chemical characteristics of pristine and plasma treated g‐C3N4.Experimental results indicate that the DBD plasma can change the physical structure and the chemical characteristics and to further affect the photocatalytic activity of g‐C3N4.The effect of NTP on g‐C3N4 is associated with the discharge intensity and the discharge time.For a long time scale,the effect of NTP on g‐C3N4 photocatalysts presents a periodic change trend.展开更多
Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the...Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the downtown campus of Ocean University of China, Qingdao, China. The concentrations of Al, Fe, Mn, Cu, Pb and Zn were determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The monthly variability of the mass concentrations of aerosol particles and the concentrations of trace metals are presented and discussed. The distribution pattern of these metals in PM10 and TSP is also discussed. During the observation period, the mass concentration of PM10 at this site ranged from 13.80 to 306.42μgm-3 , while that of TSP ranged from 31.02 to 568.82μgm-3. Both PM10 and TSP reached their highest concentrations in springtime, while the lowest values occurred in summertime. The concentrations of crustal metals followed the same variation pattern, while those of anthropogenic metals did not. A closer examination led to the conclusion that anthropogenic metals are mainly from local sources. The average concentration ratios of anthropogenic metals in PM10 to TSP were higher than the average mass ratio of PM10 to TSP, suggesting that there was a higher proportion of anthropogenic metals on smaller particles although there were a few exceptions. For crustal metals, however, the metal concentration ratios were close to the particle mass ratio, indicating that the distribution of crustal metals was much more homogeneous on aerosol particles with different sizes. The correlation analysis indicated that Al, Fe and Mn were originated from similar sources and were mainly controlled by the particle mass, while Cu, Pb and Zn were predominated by local anthropogenic sources, with Pb and Zn having similar origins.展开更多
The authenticity of 91 wines produced in Cyprus from both indigenous and other vine varieties were investigated by a holistic approach, using, advanced technology such as SNIF-NMR (site-specific natural isotopic frac...The authenticity of 91 wines produced in Cyprus from both indigenous and other vine varieties were investigated by a holistic approach, using, advanced technology such as SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and 1R-MS (isotope ratio-mass spectrometry) for the determination of the stable isotopes and ICP (inductively coupled plasma spectroscopy) for some heavy metals. The spectroscopic characteristics were evaluated statistically using different chemometric methods. The dependency of the D/H (deuterium/hydrogen) ratio of the methylene site in the ethanol molecule (D/H)ll and also theδ ^18O values of the wine water, were the most useful discriminators. Isotopic results allow us to have a complete idea about the regional variability of the isotopes. Among the metals, Ni followed by Pb was the ones with the highest discrimination value. The determined concentrations of Pb, Ni, Cr and Cd that are related to the safety of wines were within the acceptable limits that have been established by the OIV (international organization of vine and wine) or comparable with the results of the wines of other European countries. The study of the correlation between the load of heavy metals and isotopes in wines showed a dependence on the grape variety but not the geographical location of the vineyard. This is probably due to the close proximity of wine regions in Cyprus.展开更多
Heavy metal determination was carried out by applying the solid phase extraction (SPE) method in batch mode followed by atomic absorption spectroscopy (AAS) and inductively coupled plasma atomic emission spectrosc...Heavy metal determination was carried out by applying the solid phase extraction (SPE) method in batch mode followed by atomic absorption spectroscopy (AAS) and inductively coupled plasma atomic emission spectrosco py (ICP-AES) from aqueous solutions using Ghezeljeh montmorillonite nanoclay as a new natural adsorbent. The Ghezeljeh clay is characterized by using Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Mi- croscopy-Energy Dispersive Spectrometry (SEM-EDS) and X-ray Diffractometry (XRD) and X-ray Fluorescence (XRF). The results of XRD and FT-IR of nanoclay confirm that montmorillonite is the dominant mineral phase. Based on SEM images of Ghezeljeh clay, it can be seen that the distance between the plates is Nano. The effects of varying parameters such as initial concentration of metal ions, pH and type of buffer solutions, amount of ad- sorbent, contact time, and temperature on the adsorption process were examined. The effect of various interfer- ing ions was studied. The adsorption data correlated with Freundlich, Langmuir, Dubinin-Radushkevich (D-R), and Temkin isotherms. The Langmuir and Freundlich isotherms showed the best fit to the equilibrium data for Hg(II), but the equilibrium nature of Cu(ll) adsorption has been described by the Langmuir isotherm. The kinetic data were described with pseudo-first-order, pseudo-second-order and double-exponential models, The adsorp- tion process follows a pseudo-second-order reaction scheme, Calculation of AGσ, △Hσ and ASσ showed that tilenature of Hg(II) ion sorption onto the Ghezeljeh nanoclay was endothermic and was favored at higher temper- attire, and the nature of Cu(II) ion sorption was exothermic and was favored at lower temperature,展开更多
A double-prism adaptive optical design in surface plasma resonance (SPR) sensor is proposed,which consists of two identical isosceles right-triangular prisms. One prism is used as a component of Kretschmann configur...A double-prism adaptive optical design in surface plasma resonance (SPR) sensor is proposed,which consists of two identical isosceles right-triangular prisms. One prism is used as a component of Kretschmann configuration, and the other is for regulation of the optical path. When double-prism structure is angle-scanned by an immovable incident ray, the output ray will be always parallel with the incident ray and just has a small displacement with the shift of output point. The output ray can be focused on a fixed photodetector by a convex lens. Thus it can be avoided that a prism and a photodetector rotate by 8 and 28 respectively in conventional angular scanning SPR sensor. This new design reduces the number of the movable components, makes the structure simple and compact, and makes the manipulation convenient.展开更多
An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,a...An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,angle distribution,and temperature dependence of the instabilities are presented by solving this dispersion relation numerically.A significant dynamic characteristic has been revealed that the temperature increasing of the electron would result in redshift of scattered spectrum at high laser intensities.Furthermore,a novel modulational instability with double-peak temporal structure appears in a limited density region because of the coupling of scattered upshift and downshift waves.展开更多
文摘目的探讨工作气压对管内等离子体放电光学现象以及Si/O-DLC(Si and O Incorporated DLC,Si/O-DLC)薄膜结构与性能的影响,为获得管内高质量、均匀的Si/O-DLC薄膜制备工艺技术提供指导。方法利用空心阴极等离子体增强化学气相沉积(Hollow Cathode Plasma Enhanced Chemical Vapor Deposition,HC-PECVD)技术,通过改变工作气压在管内沉积Si/O-DLC薄膜。利用高速摄像机记录并对比不同工作气压下管内等离子体放电光学现象。通过SPM、XPS和Raman光谱仪表征不同工作气压下薄膜的三维立体表面形貌和微观结构,并利用SEM、纳米压痕仪以及划痕测试系统,对比研究管内Si/O-DLC薄膜的硬度、弹性模量、膜基结合力以及沿管轴向的薄膜厚度分布。结果随着工作气压的上升,管径向中心处亮斑面积和光强先增大增强后趋于缩小暗淡。在不同工作气压下,均能够在管内获得表面光滑的Si/O-DLC薄膜,粗糙度为3~10 nm。随着工作气压的上升,管内Si/O-DLC薄膜的平均厚度从1.42μm增大到2.06μm,且沿管轴向的薄膜厚度分布均匀度从24%显著提高到65%;不同工作气压下管内Si/O-DLC薄膜沿管轴向平均硬度呈先增大后减小的趋势,总体平均硬度可达(14±1)GPa。管内Si/O-DLC薄膜在工作气压上升到25 mTorr时获得较高的平均膜基结合力。结论改变工作气压能够显著影响管内壁Si/O-DLC薄膜的结构与性能,当工作气压为25 m Torr时,在管内获得均匀性最优、结合力较高的Si/O-DLC薄膜。
文摘Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique for chemical analysis, yet its application to EC reactions is hindered by the strong attenuation of infrared (IR) light in both electrodes and electrolytes. Here we demonstrate that by incorporating appropriate sub-wavelength plasmonic structures at the metal electrode, the IR field at the EC interface can be greatly enhanced via the excitation of surface plasmon. This scheme facilitates in situ vibrational spectroscopic studies, especially using the surface-specific sum-frequency generation technique.
文摘In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.
基金supported by the National Natural Science Foundation of China(No.51273184)the National Natural Science Foundation of China Shandong Joint Fund for Marine Science Research Centers(No.U1406402)
文摘The goal of this paper is to explore the relationship between the inorganic elemental fingerprint and the geographical origin identification ofMeretricis concha, which is a commonly used marine traditional Chinese medicine (TCM) for the treatment of asthma and scald bums. For that, the inorganic elemental contents ofMeretricis concha from five sampling points in Jiaozhou Bay have been determined by means of inductively coupled plasma optical emission spectrometry, and the comparative investigations based on the contents of 14 inorganic elements (A1, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn) of the samples from Jiaozhou Bay and the previous reported Rushan Bay were performed. It has been found that the samples from the two bays are ap- proximately classified into two kinds using hierarchical cluster analysis, and a four-factor model based on principle component analysis could explain approximately 75% of the detection data, also linear discriminant analysis can be used to develop a prediction model to distinguish the samples from Jiaozhou Bay and Rushan Bay with accuracy of about 93%. The results of the present investi- gation suggested that the inorganic elemental fingerprint based on the combination of the measured elemental content and chemom- etric analysis is a promising approach for verifying the geographical origin ofMeretricis concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.
文摘The synergistic effect of high voltage discharge non‐thermal plasma(NTP)and photocatalysts on contaminant removal has repeatedly confirmed by plenty of researches.Most previous plasma‐photocatalyst synergistic systems focused on the utilization of the ultraviolet light but ignored the visible light generated by high voltage discharge.Graphitic carbon nitride(g‐C3N4),a metal‐free semiconductor that exhibits high chemical stability,can utilize both the ultraviolet and visible light from high voltage discharge.However,the synergistic system of NTP and g‐C3N4 has been researched little.In this paper,the effect of NTP generated by dielectric barrier discharge(DBD)on g‐C3N4 is studied by comparing the photocatalytic activities,the surface physical structure and the surface chemical characteristics of pristine and plasma treated g‐C3N4.Experimental results indicate that the DBD plasma can change the physical structure and the chemical characteristics and to further affect the photocatalytic activity of g‐C3N4.The effect of NTP on g‐C3N4 is associated with the discharge intensity and the discharge time.For a long time scale,the effect of NTP on g‐C3N4 photocatalysts presents a periodic change trend.
基金supported by the National Natural Science Foundation of China(Grant No.49976020).
文摘Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the downtown campus of Ocean University of China, Qingdao, China. The concentrations of Al, Fe, Mn, Cu, Pb and Zn were determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The monthly variability of the mass concentrations of aerosol particles and the concentrations of trace metals are presented and discussed. The distribution pattern of these metals in PM10 and TSP is also discussed. During the observation period, the mass concentration of PM10 at this site ranged from 13.80 to 306.42μgm-3 , while that of TSP ranged from 31.02 to 568.82μgm-3. Both PM10 and TSP reached their highest concentrations in springtime, while the lowest values occurred in summertime. The concentrations of crustal metals followed the same variation pattern, while those of anthropogenic metals did not. A closer examination led to the conclusion that anthropogenic metals are mainly from local sources. The average concentration ratios of anthropogenic metals in PM10 to TSP were higher than the average mass ratio of PM10 to TSP, suggesting that there was a higher proportion of anthropogenic metals on smaller particles although there were a few exceptions. For crustal metals, however, the metal concentration ratios were close to the particle mass ratio, indicating that the distribution of crustal metals was much more homogeneous on aerosol particles with different sizes. The correlation analysis indicated that Al, Fe and Mn were originated from similar sources and were mainly controlled by the particle mass, while Cu, Pb and Zn were predominated by local anthropogenic sources, with Pb and Zn having similar origins.
文摘The authenticity of 91 wines produced in Cyprus from both indigenous and other vine varieties were investigated by a holistic approach, using, advanced technology such as SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and 1R-MS (isotope ratio-mass spectrometry) for the determination of the stable isotopes and ICP (inductively coupled plasma spectroscopy) for some heavy metals. The spectroscopic characteristics were evaluated statistically using different chemometric methods. The dependency of the D/H (deuterium/hydrogen) ratio of the methylene site in the ethanol molecule (D/H)ll and also theδ ^18O values of the wine water, were the most useful discriminators. Isotopic results allow us to have a complete idea about the regional variability of the isotopes. Among the metals, Ni followed by Pb was the ones with the highest discrimination value. The determined concentrations of Pb, Ni, Cr and Cd that are related to the safety of wines were within the acceptable limits that have been established by the OIV (international organization of vine and wine) or comparable with the results of the wines of other European countries. The study of the correlation between the load of heavy metals and isotopes in wines showed a dependence on the grape variety but not the geographical location of the vineyard. This is probably due to the close proximity of wine regions in Cyprus.
基金financial support for this work by the Imam Khomeini International University (IKIU)Mines and Mining Industries Development and Renovation Organization of Iran (IMIDRO)
文摘Heavy metal determination was carried out by applying the solid phase extraction (SPE) method in batch mode followed by atomic absorption spectroscopy (AAS) and inductively coupled plasma atomic emission spectrosco py (ICP-AES) from aqueous solutions using Ghezeljeh montmorillonite nanoclay as a new natural adsorbent. The Ghezeljeh clay is characterized by using Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Mi- croscopy-Energy Dispersive Spectrometry (SEM-EDS) and X-ray Diffractometry (XRD) and X-ray Fluorescence (XRF). The results of XRD and FT-IR of nanoclay confirm that montmorillonite is the dominant mineral phase. Based on SEM images of Ghezeljeh clay, it can be seen that the distance between the plates is Nano. The effects of varying parameters such as initial concentration of metal ions, pH and type of buffer solutions, amount of ad- sorbent, contact time, and temperature on the adsorption process were examined. The effect of various interfer- ing ions was studied. The adsorption data correlated with Freundlich, Langmuir, Dubinin-Radushkevich (D-R), and Temkin isotherms. The Langmuir and Freundlich isotherms showed the best fit to the equilibrium data for Hg(II), but the equilibrium nature of Cu(ll) adsorption has been described by the Langmuir isotherm. The kinetic data were described with pseudo-first-order, pseudo-second-order and double-exponential models, The adsorp- tion process follows a pseudo-second-order reaction scheme, Calculation of AGσ, △Hσ and ASσ showed that tilenature of Hg(II) ion sorption onto the Ghezeljeh nanoclay was endothermic and was favored at higher temper- attire, and the nature of Cu(II) ion sorption was exothermic and was favored at lower temperature,
文摘A double-prism adaptive optical design in surface plasma resonance (SPR) sensor is proposed,which consists of two identical isosceles right-triangular prisms. One prism is used as a component of Kretschmann configuration, and the other is for regulation of the optical path. When double-prism structure is angle-scanned by an immovable incident ray, the output ray will be always parallel with the incident ray and just has a small displacement with the shift of output point. The output ray can be focused on a fixed photodetector by a convex lens. Thus it can be avoided that a prism and a photodetector rotate by 8 and 28 respectively in conventional angular scanning SPR sensor. This new design reduces the number of the movable components, makes the structure simple and compact, and makes the manipulation convenient.
文摘An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,angle distribution,and temperature dependence of the instabilities are presented by solving this dispersion relation numerically.A significant dynamic characteristic has been revealed that the temperature increasing of the electron would result in redshift of scattered spectrum at high laser intensities.Furthermore,a novel modulational instability with double-peak temporal structure appears in a limited density region because of the coupling of scattered upshift and downshift waves.