Using Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2011 tail seasons, we study the plasma properties of high speed flows (HSFs) and background plasma sheet...Using Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2011 tail seasons, we study the plasma properties of high speed flows (HSFs) and background plasma sheet events (BPSs) in Earth's magnetotail (|YGsM|〈13RE, |ZGsM|〈5RE, -30RE〈XrsM〈-6RE), and their correlations with solar wind parameters. Statistical results show that the closer the HSFs and BPSs are to the Earth, the hotter they become, and the temperature increase of HSFs is larger than that of BPSs. The density and temperature ratios between HSFs and BPSs are also larger when events are closer to Earth. We also find that the best correlations between the HSFs (BPSs) density and the solar wind density occur when the solar wind density is averaged 2 (3.5) hours prior to the onset of HSFs (BPSs). The normalized densities of both HSFs and BPSs are correlated with the interplanetary magnetic field (IMF) 0 angles ( 0 = arctan(Bz √Bx^2+y^2 ) which are averaged 3 hours before the observation time. Further analysis indicates that both HSFs and BPSs become denser during the northward IMF period.展开更多
基金National Natural Science Foundation of China (Grant Nos. 41322031, 41031065 & 41574157)the Shandong Province Outstanding Young Scientist Award (Grant No. 2013BSE27132)+2 种基金the Research Fund for the Doctoral Program of Higher Education (Grant No. 20130131120073)the program for New Century Excellent Talents in University (Grant No. NCET-12-0332)State Key Laboratories of Space Weather
文摘Using Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2011 tail seasons, we study the plasma properties of high speed flows (HSFs) and background plasma sheet events (BPSs) in Earth's magnetotail (|YGsM|〈13RE, |ZGsM|〈5RE, -30RE〈XrsM〈-6RE), and their correlations with solar wind parameters. Statistical results show that the closer the HSFs and BPSs are to the Earth, the hotter they become, and the temperature increase of HSFs is larger than that of BPSs. The density and temperature ratios between HSFs and BPSs are also larger when events are closer to Earth. We also find that the best correlations between the HSFs (BPSs) density and the solar wind density occur when the solar wind density is averaged 2 (3.5) hours prior to the onset of HSFs (BPSs). The normalized densities of both HSFs and BPSs are correlated with the interplanetary magnetic field (IMF) 0 angles ( 0 = arctan(Bz √Bx^2+y^2 ) which are averaged 3 hours before the observation time. Further analysis indicates that both HSFs and BPSs become denser during the northward IMF period.