High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It w...High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It was shown that: for the reason of thermolysis and oxidation, the pH and Oxidation Reduction Potential (ORP) of solution decreased gradually with the increase of peak voltage and fulvic acid solution concentration, meanwhile the temperature and turbidity of solution increased gradually. Adding hydrochlorid acid in the treatment could amplify the effect of plasma. When the concentration of NOM as the surrogate parameter, Ultraviolet Absorbancy Degree (UV254) increased slowly by the effect of plasma, while the degradation of Total Organic Carbon (TOC) was first-order reaction. The removal rate of TOC increased from 22.6% to 33.4% by high voltage pulse electrical field of 35 kv, and from 25.6% to 36.7% with the addition of hydrochlorid acid. This paper may provide some basis for the scale-up design of water treatment process by high voltage pulse discharge plasma with other technologies.展开更多
In the work, we studied the effect of the plasma of a runaway electron preionized (REP) diffuse discharge (DD) on the composition, structure, and properties of ST3PS steel surface layers. Voltage pulses with an in...In the work, we studied the effect of the plasma of a runaway electron preionized (REP) diffuse discharge (DD) on the composition, structure, and properties of ST3PS steel surface layers. Voltage pulses with an incident wave amplitude of up to 30 kV, FWHM of around 4 ns, and rise time of around 2.5 ns were applied to the gap in an inhomogeneous electric field. The ST3PS steel specimens exposed to this type of discharge revealed changes in their defect subsystem, suggesting that the runaway electron preionized diffuse discharge provides surface hardening of the steel.展开更多
We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyze...We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyzed the relationship between the characteristic of FACs at the PSBL in magnetotail and the Kp index. The main results indicated the followings: 1) In the different geomagnetic activity levels, the relative occurrence of FACs in PSBL increased monotonically with geomagnetic activity. 2) The density of FACs in PSBL increased monotonically with Kp index. In the storm main phase, the density of FACs increased dramatically, the maximum FACs approximately equaled 19.05 nA m-2 while Kp equaled 5.3) The variation of FACs density in PSBL was consistent with the variation of the Kp index. However, when AE〈800 nT, FACs density in PSBL increased with increasing AE, and when AE〉800 nT, it decreased with increasing AE. Therefore, our results suggested that the FACs density in PSBL had a closer correlation with Kp index.展开更多
In this work, the terahertz (THz) electromotive force (EMF) of the surface plasmon (SP) electric field and field strength was investigated in its propagation direction. Based on the nanowires structure, we intro...In this work, the terahertz (THz) electromotive force (EMF) of the surface plasmon (SP) electric field and field strength was investigated in its propagation direction. Based on the nanowires structure, we introduced physical models which were light wave energy of surface plasmon polariton (SPP) pulse and the variation of EMF changes in the active condition. Results of theory and verification showed SPP generated EMF with 10-2-10 V among wire radii of 5-30 nm; the electric field was up to 10^5-1066V/cm in the radius of 5 nm; the electric field intensity induced localization at λ=850 nm, and at the same time light intensity amplified 40 times. The characteristics which are femtosecond SPP pulse response and force-field amplifier in this work are significant for nonlinear spectroscopy research.展开更多
A sounding rocket experiment undertaken by the Chinese Meridian Project from a low latitude station on Hainan Island(19.5°N,109.1°E),China,measured the DC electric field during 05:45-05:52 LT on April 5,2013...A sounding rocket experiment undertaken by the Chinese Meridian Project from a low latitude station on Hainan Island(19.5°N,109.1°E),China,measured the DC electric field during 05:45-05:52 LT on April 5,2013.The data observed using a set of electric field double probes,as part of the rocket's scientific payload,revealed the special profile of how the vectors of the DC electric field vary with altitude between 130 and 190 km.During the experiment,the vertical electric field was downward,and the maximum vertical electric field was nearly 5.1 mV/m near the altitude of 176 km.The zonal electric field was eastward and slightly less than 0.6 mV/m.The plasma drift velocity was estimated from the E×B motion,and the zonal drift velocity was eastward and of the order of 100 m/s.The zonal wind velocity was also estimated using the drift velocity near the maximum density height in the F1-region,and it was found to be nearly 120 m/s.This work constituted the first in situ measurement of the DC electric field conducted within the Fl-region(between 130 and 190 km) in the East Asian Sector.展开更多
This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. F...This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.展开更多
Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically. It is found that the Mope of transverse fields are reduced significantly, however,...Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically. It is found that the Mope of transverse fields are reduced significantly, however, the slope of longitudinal electric field, which plays a key role on electrons acceleration in bubble, changes little. Moreover a modified longitudinal compressed bubble shape leads to a shorter dephasing distance which makes the electrons acceleration energy reduced to some extent. As a comparison we perform particle-in-cell simulations whose results are consistent with that of our theoretical consideration.展开更多
文摘High voltage pulse natural organic matter (NOM) toxic by-products. Fulvic acid discharge plasma can remove and produce no production of solution was treated by high voltage pulse discharge plasma in this paper. It was shown that: for the reason of thermolysis and oxidation, the pH and Oxidation Reduction Potential (ORP) of solution decreased gradually with the increase of peak voltage and fulvic acid solution concentration, meanwhile the temperature and turbidity of solution increased gradually. Adding hydrochlorid acid in the treatment could amplify the effect of plasma. When the concentration of NOM as the surrogate parameter, Ultraviolet Absorbancy Degree (UV254) increased slowly by the effect of plasma, while the degradation of Total Organic Carbon (TOC) was first-order reaction. The removal rate of TOC increased from 22.6% to 33.4% by high voltage pulse electrical field of 35 kv, and from 25.6% to 36.7% with the addition of hydrochlorid acid. This paper may provide some basis for the scale-up design of water treatment process by high voltage pulse discharge plasma with other technologies.
文摘In the work, we studied the effect of the plasma of a runaway electron preionized (REP) diffuse discharge (DD) on the composition, structure, and properties of ST3PS steel surface layers. Voltage pulses with an incident wave amplitude of up to 30 kV, FWHM of around 4 ns, and rise time of around 2.5 ns were applied to the gap in an inhomogeneous electric field. The ST3PS steel specimens exposed to this type of discharge revealed changes in their defect subsystem, suggesting that the runaway electron preionized diffuse discharge provides surface hardening of the steel.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40804031, 41074114, 40921063)the Specialized Research Fund for State Key Laboratories
文摘We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyzed the relationship between the characteristic of FACs at the PSBL in magnetotail and the Kp index. The main results indicated the followings: 1) In the different geomagnetic activity levels, the relative occurrence of FACs in PSBL increased monotonically with geomagnetic activity. 2) The density of FACs in PSBL increased monotonically with Kp index. In the storm main phase, the density of FACs increased dramatically, the maximum FACs approximately equaled 19.05 nA m-2 while Kp equaled 5.3) The variation of FACs density in PSBL was consistent with the variation of the Kp index. However, when AE〈800 nT, FACs density in PSBL increased with increasing AE, and when AE〉800 nT, it decreased with increasing AE. Therefore, our results suggested that the FACs density in PSBL had a closer correlation with Kp index.
基金supported by the National Natural Science Foundation of China (Grant No. 60877047)the Natural Science Foundation of Hebei Province,China (Grant No. F20100002002)
文摘In this work, the terahertz (THz) electromotive force (EMF) of the surface plasmon (SP) electric field and field strength was investigated in its propagation direction. Based on the nanowires structure, we introduced physical models which were light wave energy of surface plasmon polariton (SPP) pulse and the variation of EMF changes in the active condition. Results of theory and verification showed SPP generated EMF with 10-2-10 V among wire radii of 5-30 nm; the electric field was up to 10^5-1066V/cm in the radius of 5 nm; the electric field intensity induced localization at λ=850 nm, and at the same time light intensity amplified 40 times. The characteristics which are femtosecond SPP pulse response and force-field amplifier in this work are significant for nonlinear spectroscopy research.
基金supported by the Specialized Research Fund for State Key Laboratories and National Space Science Center-135 (Sounding Rocket Project)National Natural Science Foundation of China(Grant Nos.40774081 & 2011CB811404)+2 种基金Chinese Academy of Sciences(Grant No.KZZD-EW-01-2)Chinese Academy of Science Fellowship for Young International Scientist Grant(Grant No.2010Y1GB3)Chinese Academy of Sciences-The Third World Academy of Sciences (CAS-TWAS) Fellowship for Postdoctoral and Visiting Scholar(Grant No. 201377GB0001)
文摘A sounding rocket experiment undertaken by the Chinese Meridian Project from a low latitude station on Hainan Island(19.5°N,109.1°E),China,measured the DC electric field during 05:45-05:52 LT on April 5,2013.The data observed using a set of electric field double probes,as part of the rocket's scientific payload,revealed the special profile of how the vectors of the DC electric field vary with altitude between 130 and 190 km.During the experiment,the vertical electric field was downward,and the maximum vertical electric field was nearly 5.1 mV/m near the altitude of 176 km.The zonal electric field was eastward and slightly less than 0.6 mV/m.The plasma drift velocity was estimated from the E×B motion,and the zonal drift velocity was eastward and of the order of 100 m/s.The zonal wind velocity was also estimated using the drift velocity near the maximum density height in the F1-region,and it was found to be nearly 120 m/s.This work constituted the first in situ measurement of the DC electric field conducted within the Fl-region(between 130 and 190 km) in the East Asian Sector.
基金supported by the National Natural Science Foundation of China (51222606)
文摘This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.
基金Supported by the National Natural Science Foundation of China(NNSFC)under Grant Nos.11175023,10834008the Fundamental Research Funds for the Central Universities(FRFCU)
文摘Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically. It is found that the Mope of transverse fields are reduced significantly, however, the slope of longitudinal electric field, which plays a key role on electrons acceleration in bubble, changes little. Moreover a modified longitudinal compressed bubble shape leads to a shorter dephasing distance which makes the electrons acceleration energy reduced to some extent. As a comparison we perform particle-in-cell simulations whose results are consistent with that of our theoretical consideration.