通过使用数值模拟和实验相结合的方法研究圆柱形霍尔等离子体推进器。应用蒙特卡洛方法和Particle In Cell(PIC)方法对放电通道内等离子体碰撞和行为进行模拟。建立圆柱形霍尔推进器的物理和数值模型;通过对放电和加速区等离子体的产生...通过使用数值模拟和实验相结合的方法研究圆柱形霍尔等离子体推进器。应用蒙特卡洛方法和Particle In Cell(PIC)方法对放电通道内等离子体碰撞和行为进行模拟。建立圆柱形霍尔推进器的物理和数值模型;通过对放电和加速区等离子体的产生和输运进行模拟,掌握了等离子体放电和加速机理以及内磁极的刻蚀情况。结果表明:随着电压的升高,内磁极刻蚀较为严重;推进器内部离子能量值约为放电电压值的50%左右。同时通过实验方法测定不同放电电压情况下推进器的放电性能。展开更多
针对脉冲等离子体推进器作为执行机构的微纳卫星姿态控制系统(attitude control system,ACS)仿真的需要,采用脉冲信号控制双旋翼实验平台对微纳卫星姿态控制系统进行半实物仿真。使用Elman神经网络PID的控制策略,在线调整PID参数,适应...针对脉冲等离子体推进器作为执行机构的微纳卫星姿态控制系统(attitude control system,ACS)仿真的需要,采用脉冲信号控制双旋翼实验平台对微纳卫星姿态控制系统进行半实物仿真。使用Elman神经网络PID的控制策略,在线调整PID参数,适应动态系统。通过半实物仿真平台的对比试验,验证了Elman神经网络PID控制系统自适应能力强、超调量小等优点,同时也验证了双旋翼实验平台对于脉冲等离子推进器半实物仿真的有效性。展开更多
文摘通过使用数值模拟和实验相结合的方法研究圆柱形霍尔等离子体推进器。应用蒙特卡洛方法和Particle In Cell(PIC)方法对放电通道内等离子体碰撞和行为进行模拟。建立圆柱形霍尔推进器的物理和数值模型;通过对放电和加速区等离子体的产生和输运进行模拟,掌握了等离子体放电和加速机理以及内磁极的刻蚀情况。结果表明:随着电压的升高,内磁极刻蚀较为严重;推进器内部离子能量值约为放电电压值的50%左右。同时通过实验方法测定不同放电电压情况下推进器的放电性能。
文摘针对脉冲等离子体推进器作为执行机构的微纳卫星姿态控制系统(attitude control system,ACS)仿真的需要,采用脉冲信号控制双旋翼实验平台对微纳卫星姿态控制系统进行半实物仿真。使用Elman神经网络PID的控制策略,在线调整PID参数,适应动态系统。通过半实物仿真平台的对比试验,验证了Elman神经网络PID控制系统自适应能力强、超调量小等优点,同时也验证了双旋翼实验平台对于脉冲等离子推进器半实物仿真的有效性。