By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulati...By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulations. excite propagating surface plasmons in graphene where the graphene edge plays graphene layer, we present a rigorous by incident plane waves through the Our results reveal a convenient way to an important role.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.51172030,11274052,90921015,and 11174040
文摘By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulations. excite propagating surface plasmons in graphene where the graphene edge plays graphene layer, we present a rigorous by incident plane waves through the Our results reveal a convenient way to an important role.