采用分段机械球磨-放电等离子烧结法,进行了节能变压器用新型非晶合金Fe77Si9B13Ce0.5Nb0.2Cr0.3,并进行了XRD、SEM分析和软磁性能、力学性能和耐腐蚀性能的测试。结果表明,与现有非晶合金Fe78Si9B13相比,该新型非晶合金的软磁性能、力...采用分段机械球磨-放电等离子烧结法,进行了节能变压器用新型非晶合金Fe77Si9B13Ce0.5Nb0.2Cr0.3,并进行了XRD、SEM分析和软磁性能、力学性能和耐腐蚀性能的测试。结果表明,与现有非晶合金Fe78Si9B13相比,该新型非晶合金的软磁性能、力学性能和耐腐蚀性能均得到明显改善,其中初始磁导率和饱和磁感应强度分别增加了70%、32%,20℃时试样的抗拉强度和伸长率分别增加36%、4.4%,腐蚀电位正移268 m V。展开更多
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal...Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.展开更多
文摘采用分段机械球磨-放电等离子烧结法,进行了节能变压器用新型非晶合金Fe77Si9B13Ce0.5Nb0.2Cr0.3,并进行了XRD、SEM分析和软磁性能、力学性能和耐腐蚀性能的测试。结果表明,与现有非晶合金Fe78Si9B13相比,该新型非晶合金的软磁性能、力学性能和耐腐蚀性能均得到明显改善,其中初始磁导率和饱和磁感应强度分别增加了70%、32%,20℃时试样的抗拉强度和伸长率分别增加36%、4.4%,腐蚀电位正移268 m V。
基金Project(51104066)supported by the National Natural Science Foundation of ChinaProjects(2015A010105011,2015A020214008)supported by Science and Technology Program of Guangdong Province,ChinaProject(201505040925029)supported by Science and Technology Research Program of Guangzhou,China
文摘Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.