探索非贵金属材料作为高效氧还原反应催化剂是迫切需要的,但具有一定的挑战性。本文采用等离子体轰击和酸洗相结合的策略合成了Co原子团簇修饰的多孔碳载体催化剂(CoAC/NC)。通过多种表征手段证实了的原子团簇特征。所得到的CoAC/NC催...探索非贵金属材料作为高效氧还原反应催化剂是迫切需要的,但具有一定的挑战性。本文采用等离子体轰击和酸洗相结合的策略合成了Co原子团簇修饰的多孔碳载体催化剂(CoAC/NC)。通过多种表征手段证实了的原子团簇特征。所得到的CoAC/NC催化剂在三电极体系和锌-空电池方面都表现出优异的氧还原反应活性。该催化剂的氧还原反应半波电位为0.887 V,显著优于商业Pt/C催化剂,且表现出优异的稳定性。此外,该催化剂组装的锌-空电池的峰值功率密度为181.5 m W·cm^(-2),同样远高于Pt/C催化剂。这项工作不仅合成了一种高效的氧还原反应催化剂,而且为原子团簇催化剂的理性设计和实际应用提供了新的见解。展开更多
Y2001-62909-138 0118302电镀 Cu 与 Ni 上 Sn<sub>63</sub>Pb<sub>37</sub>的界面微结构和机械疲劳行为=Interface microstructure and mechanical fatigue be-havior of Sn<sub>63</sub>Pb<su...Y2001-62909-138 0118302电镀 Cu 与 Ni 上 Sn<sub>63</sub>Pb<sub>37</sub>的界面微结构和机械疲劳行为=Interface microstructure and mechanical fatigue be-havior of Sn<sub>63</sub>Pb<sub>37</sub>on electroplated Cu and Ni[会,英]/Zhang,C.& Shang,J.K.//2000 IEEE 50th Elec-tronic Components & Technology Conference.—138~141(PC)0118303高阻尼铝基复合材料在海水中的腐蚀行为[刊]/刘维镐//功能材料与器件学报.—2001,17(2).—195~198(E)展开更多
Hydrogenated microcrystalline silicon (mc-Si:H) thin films were deposited by inductively coupled plasma assistant magnetron sputtering (ICP-MS) in an Ar-H2 gas mixture. The role of ion bombardment in the growth o...Hydrogenated microcrystalline silicon (mc-Si:H) thin films were deposited by inductively coupled plasma assistant magnetron sputtering (ICP-MS) in an Ar-H2 gas mixture. The role of ion bombardment in the growth of mc-Si:H films was studied with increasing negative bias voltages on the substrate holder from 0 to -100 V. Raman scattering, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) were performed to investigate the microstructure changes of deposited Si films. Raman scattering showed that the high energy ion bombardment resulted in crystalline degradation of Si films. The XRD results showed the decrease and even elimination of preferential growth orientation of crystalline Si films with ion bombardment energy increase. The SiH bonding configuration changes and the increase of bonded hydrogen concentration were determined with the analysis of FTIR spectra. Furthermore, the dramatic evolution of cross-sectional morphology of Si thin films was detected by TEM observation.展开更多
文摘探索非贵金属材料作为高效氧还原反应催化剂是迫切需要的,但具有一定的挑战性。本文采用等离子体轰击和酸洗相结合的策略合成了Co原子团簇修饰的多孔碳载体催化剂(CoAC/NC)。通过多种表征手段证实了的原子团簇特征。所得到的CoAC/NC催化剂在三电极体系和锌-空电池方面都表现出优异的氧还原反应活性。该催化剂的氧还原反应半波电位为0.887 V,显著优于商业Pt/C催化剂,且表现出优异的稳定性。此外,该催化剂组装的锌-空电池的峰值功率密度为181.5 m W·cm^(-2),同样远高于Pt/C催化剂。这项工作不仅合成了一种高效的氧还原反应催化剂,而且为原子团簇催化剂的理性设计和实际应用提供了新的见解。
文摘Y2001-62909-138 0118302电镀 Cu 与 Ni 上 Sn<sub>63</sub>Pb<sub>37</sub>的界面微结构和机械疲劳行为=Interface microstructure and mechanical fatigue be-havior of Sn<sub>63</sub>Pb<sub>37</sub>on electroplated Cu and Ni[会,英]/Zhang,C.& Shang,J.K.//2000 IEEE 50th Elec-tronic Components & Technology Conference.—138~141(PC)0118303高阻尼铝基复合材料在海水中的腐蚀行为[刊]/刘维镐//功能材料与器件学报.—2001,17(2).—195~198(E)
基金supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No.707015)the University Innovative Research Team Project of Liaoning Province,the National Natural Science Foundation of China (Grant Nos.11204024 and 11004021)the Fundamental Research Funds for the Central Universities (Grant Nos. DC12010208 and DC120101173)
文摘Hydrogenated microcrystalline silicon (mc-Si:H) thin films were deposited by inductively coupled plasma assistant magnetron sputtering (ICP-MS) in an Ar-H2 gas mixture. The role of ion bombardment in the growth of mc-Si:H films was studied with increasing negative bias voltages on the substrate holder from 0 to -100 V. Raman scattering, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) were performed to investigate the microstructure changes of deposited Si films. Raman scattering showed that the high energy ion bombardment resulted in crystalline degradation of Si films. The XRD results showed the decrease and even elimination of preferential growth orientation of crystalline Si films with ion bombardment energy increase. The SiH bonding configuration changes and the increase of bonded hydrogen concentration were determined with the analysis of FTIR spectra. Furthermore, the dramatic evolution of cross-sectional morphology of Si thin films was detected by TEM observation.