This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on ox...This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on oxygen‐vacancy‐containing BiVO4.The morphology of the BiVO4is olive shaped,and it has a uniform size distribution.The BiVO4possesses a high oxygen vacancy density,and the resulting Ag nanoparticle‐BiVO4catalyst exhibits higher photocatalytic activity than BiVO4.The RhB degradation by the Ag nanoparticle‐BiVO4catalyst is99%after100min of simulated solar irradiation.BiVO4containing oxygen vacancies as a rationally designed support extends the catalyst response into the near‐infrared region,and facilitates the trapping and transfer of plasmonic hot electrons.The enhanced photocatalytic efficiency is attributed to charge transfer from the BiVO4to Ag nanoparticles,and surface plasmon resonance of the Ag nanoparticles.These insights into electron‐hole separation and charge transfer may arouse interest in solar‐driven wastewater treatment and water splitting.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
A novel discharge device is designed on the basis of the configuration of micro-hollow cathode discharge (MHCD). By using many MHCDs in parallel connection, a micro-discharge array can be constructed. With the micro...A novel discharge device is designed on the basis of the configuration of micro-hollow cathode discharge (MHCD). By using many MHCDs in parallel connection, a micro-discharge array can be constructed. With the micro-discharge array, a high-pressure high-current density glow discharge plasmas can be formed to make a plasma display panel (PDP). An air discharge experiment is finished with the discharge device. The stable direct current glow discharge is formed under the pressure from 20 Torr to 500 Torr. The voltage-current characteristic curve and the discharge photograph are noted. The voltage-current characteristic curve has a positive differential resistance coefficient on the whole discharge range. The estimated current density reaches 70.1A/cm^3, the power density is 3.6×10^4 W/cm^3, and the electron density is in the order of 10^13 cm^-3 at p = 200 Torr and ID = 10 mA. The experimental results indicate that the desiclned discharqe device is appropriate for PDP.展开更多
There is a large amount of micro debris ranging between millimeters and micrometers in space, which has significant influence on the reliability and life of spacecrafts through long-duration integrated impacts and has...There is a large amount of micro debris ranging between millimeters and micrometers in space, which has significant influence on the reliability and life of spacecrafts through long-duration integrated impacts and has to be considered in designing a vehicle's suitability to the space environment. In order to simulate the micro-impacts on exposed materials, a plasma-driven micro-particle accelerator was developed. The major processes, including the acceleration, compression and ejection of plasmas, were modeled. By comparing the theoretical simulations with the experimental results, the acceleration mechanism was clarified. Moreover, through a series of experiments, the optimum operation range was investigated, and the acceleration ability was primarily determined.展开更多
Electric field penetration is a consequence of solar wind interaction with planetary magnetosphere and/or ionosphere. For both Earth with intrinsic magnetosphere and Mars/Venus without intrinsic magnetosphere, the pen...Electric field penetration is a consequence of solar wind interaction with planetary magnetosphere and/or ionosphere. For both Earth with intrinsic magnetosphere and Mars/Venus without intrinsic magnetosphere, the penetration electric field causes various kinds of global and local electrodynamic response of the ionosphere to the solar wind electric field, especially the plasma motion in the ionosphere. Within the first 14 years of the twenty-first century, the cause and effect of the electric field penetra- tion on Earth has been investigated extensively and understood more deeply. Here we review the progress acquired on the patterns and drivers of the penetration electric field, and its influences on the plasma distribution and the equatorial spread F in the mid- and low-latitude ionosphere. From the perspective of comparative study, we also shortly introduce the new results for Mars. What has become clear is that our understanding of electric field penetration has been significantly improved, but ultimately the crucial details of the global picture still remain un- known. Looking forward to the future research of the electric field penetration in Earth's ionosphere, the break- through relies on new instruments built up at different longitudes to improve the global coverage of the observa- tion. An integrated network of instrument is necessary to reveal the longitude and local-time dependence of the electric field penetration and shed new light on the physical details of the global ionospheric processes driven by the electric field penetration.展开更多
In this paper,we studied the pH dependent plasmon-driven surface-catalysis(PDSC) reactions of p,p'-dimercaptoazobenzene(DMAB) produced from para-aminothiophenol(PATP) and 4-nitrobenzenethiol(4NBT) both theoretical...In this paper,we studied the pH dependent plasmon-driven surface-catalysis(PDSC) reactions of p,p'-dimercaptoazobenzene(DMAB) produced from para-aminothiophenol(PATP) and 4-nitrobenzenethiol(4NBT) both theoretically and experimentally.The surface enhanced Raman spectrum(SERS) of DMAB produced from PATP and 4NBT on Ag films in solutions with various pH values has been measured.The simulation and experimental results indicated that the pH dependence of PATP appeared in acidic environment and came from the amino group NH2.Furthermore,the ratio of intensity of Raman peak caused by PATP and DMAB indicated that this acidic sensor had higher pH sensitivity when it was excited by photons of higher energy.展开更多
Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwa...Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwave decay.Theoretical analysis and observations indicate that the filaments are because of collisionless mechanisms,which are caused by the electromagnetic instability,such as the beam-Weibel instability.Collision experiments were also carried out for comparison and no filaments were generated.展开更多
文摘对一种适用于106.68cm PDP扫描驱动IC的HV-PMOS器件进行了分析研究。通过使用TCAD软件对HV-PMOS进行了综合仿真,得到了器件性能最优时的结构参数及工艺参数。HV-PMOS器件及整体扫描驱动IC在杭州士兰集成电路公司完成流片。PCM(Process control module)片上的HV-PMOS击穿电压达到了185V,阈值为6.5V。整体扫描驱动芯片的击穿电压达到了180V,满足了设计要求。
基金supported by the National Natural Science Foundation of China(21476033)~~
文摘This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on oxygen‐vacancy‐containing BiVO4.The morphology of the BiVO4is olive shaped,and it has a uniform size distribution.The BiVO4possesses a high oxygen vacancy density,and the resulting Ag nanoparticle‐BiVO4catalyst exhibits higher photocatalytic activity than BiVO4.The RhB degradation by the Ag nanoparticle‐BiVO4catalyst is99%after100min of simulated solar irradiation.BiVO4containing oxygen vacancies as a rationally designed support extends the catalyst response into the near‐infrared region,and facilitates the trapping and transfer of plasmonic hot electrons.The enhanced photocatalytic efficiency is attributed to charge transfer from the BiVO4to Ag nanoparticles,and surface plasmon resonance of the Ag nanoparticles.These insights into electron‐hole separation and charge transfer may arouse interest in solar‐driven wastewater treatment and water splitting.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘A novel discharge device is designed on the basis of the configuration of micro-hollow cathode discharge (MHCD). By using many MHCDs in parallel connection, a micro-discharge array can be constructed. With the micro-discharge array, a high-pressure high-current density glow discharge plasmas can be formed to make a plasma display panel (PDP). An air discharge experiment is finished with the discharge device. The stable direct current glow discharge is formed under the pressure from 20 Torr to 500 Torr. The voltage-current characteristic curve and the discharge photograph are noted. The voltage-current characteristic curve has a positive differential resistance coefficient on the whole discharge range. The estimated current density reaches 70.1A/cm^3, the power density is 3.6×10^4 W/cm^3, and the electron density is in the order of 10^13 cm^-3 at p = 200 Torr and ID = 10 mA. The experimental results indicate that the desiclned discharqe device is appropriate for PDP.
基金Supported by the Project of Development and Transformation of Scientific Equipment from Chinese Academy of Sciences (Grant No. Y2003011)
文摘There is a large amount of micro debris ranging between millimeters and micrometers in space, which has significant influence on the reliability and life of spacecrafts through long-duration integrated impacts and has to be considered in designing a vehicle's suitability to the space environment. In order to simulate the micro-impacts on exposed materials, a plasma-driven micro-particle accelerator was developed. The major processes, including the acceleration, compression and ejection of plasmas, were modeled. By comparing the theoretical simulations with the experimental results, the acceleration mechanism was clarified. Moreover, through a series of experiments, the optimum operation range was investigated, and the acceleration ability was primarily determined.
基金supported by the Thousand Young Talents Program of China,the National Basic Research Program of China(2011CB811405)the National Natural Science Foundation of China(41321003,41174136,41174138)
文摘Electric field penetration is a consequence of solar wind interaction with planetary magnetosphere and/or ionosphere. For both Earth with intrinsic magnetosphere and Mars/Venus without intrinsic magnetosphere, the penetration electric field causes various kinds of global and local electrodynamic response of the ionosphere to the solar wind electric field, especially the plasma motion in the ionosphere. Within the first 14 years of the twenty-first century, the cause and effect of the electric field penetra- tion on Earth has been investigated extensively and understood more deeply. Here we review the progress acquired on the patterns and drivers of the penetration electric field, and its influences on the plasma distribution and the equatorial spread F in the mid- and low-latitude ionosphere. From the perspective of comparative study, we also shortly introduce the new results for Mars. What has become clear is that our understanding of electric field penetration has been significantly improved, but ultimately the crucial details of the global picture still remain un- known. Looking forward to the future research of the electric field penetration in Earth's ionosphere, the break- through relies on new instruments built up at different longitudes to improve the global coverage of the observa- tion. An integrated network of instrument is necessary to reveal the longitude and local-time dependence of the electric field penetration and shed new light on the physical details of the global ionospheric processes driven by the electric field penetration.
基金supported by the Fundamental Research Funds for the Central Universities(CDJZR11300003)National Basic Research Program of China(973 Program,2012CB626801)+2 种基金National Natural Science Foundation of China(11274057)Fundamental Research Funds for the Central Universities(DC12010117)Program for Liaoning Excellent Talents in University(LJQ2012112)
文摘In this paper,we studied the pH dependent plasmon-driven surface-catalysis(PDSC) reactions of p,p'-dimercaptoazobenzene(DMAB) produced from para-aminothiophenol(PATP) and 4-nitrobenzenethiol(4NBT) both theoretically and experimentally.The surface enhanced Raman spectrum(SERS) of DMAB produced from PATP and 4NBT on Ag films in solutions with various pH values has been measured.The simulation and experimental results indicated that the pH dependence of PATP appeared in acidic environment and came from the amino group NH2.Furthermore,the ratio of intensity of Raman peak caused by PATP and DMAB indicated that this acidic sensor had higher pH sensitivity when it was excited by photons of higher energy.
基金supported by the National Natural Science Foundation of China(Grant Nos.11135012,10925421,11375262 and 11220101002)the National Basic Research Program of China(Grant No.2013CBA01501)
文摘Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwave decay.Theoretical analysis and observations indicate that the filaments are because of collisionless mechanisms,which are caused by the electromagnetic instability,such as the beam-Weibel instability.Collision experiments were also carried out for comparison and no filaments were generated.