The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear t...The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear ternary compound(T phase),whose chemical formula is(Mg1-xZnx)11Ce.The range of Zn content in T phase is from 9.6% to 43.6%(molar fraction).The crystal structure of T phase is C-centered orthorhombic lattice with lattice parameters of a=0.96-1.029 nm,b=1.115-1.204 nm,c=0.940-1.015 nm.And the lattice parameters of T phase are decreasing a little with increasing Zn content.According to the results of composition and crystal structure,the maximal solubility of Zn in Mg12Ce is about 7.8%(molar fraction),and the chemical formula of the solid solution can be identified as(Mg1-xZnx)12Ce.The isothermal section of Mg-Zn-Ce system in Mg-rich corner at 400 ℃ was constructed.展开更多
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem...Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.展开更多
Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al a...Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.展开更多
A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties w...A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties was studied.The results show that the morphology of mechanical milling powder is regular with size in a range of 5-30 μm.Main phases of γ-TiAl,α2-Ti3Al and few B2 phase are observed in the SPS bulk samples.For samples sintered at 1150 °C,equiaxed crystal grain microstructure is achieved with size in a range of 300 nm-1 μm.With increasing SPS temperature to 1250 °C,the size of equiaxed crystal grains obviously increases,the microhardness decreases from HV592 to HV535,and the bending strength decreases from 605 to 219 MPa.Meantime,the compression fracture strength also decreases from 2601 to 1905 MPa,and the strain compression decreases from 28.95% to 12.09%.展开更多
A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering...A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture.展开更多
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro...TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.展开更多
Ti185 alloy is widely used in key industrial fields such as aerospace due to its excellent mechanical properties.The traditional method of preparing Ti185 alloy will inevitably appear“βfleck”,resulting in the decre...Ti185 alloy is widely used in key industrial fields such as aerospace due to its excellent mechanical properties.The traditional method of preparing Ti185 alloy will inevitably appear“βfleck”,resulting in the decrease of mechanical properties,and the high price of V element limits the wide application of Ti185.In this paper,a low-cost master alloy V-Fe powder is used,a dense block is prepared by spark plasma sintering(SPS)technology,and a high-performance Ti185 alloy is prepared by controlling the sintering parameters.XRD and SEM were used to investigate the phase and microstructure of the samples prepared under different parameters.The compressive strength and friction properties of the directly prepared samples were studied.The samples with a sintering temperature of 1350 ℃ and a holding time of 30 min exhibited the most excellent comprehensive performance,with the highest compressive strength and lowest friction coefficient of 1931.59 MPa and 0.47,respectively.展开更多
50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient ...50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.展开更多
Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesi...Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620 ℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600 ℃. Its sinterability is improved at a temperature of 620 ℃ whereas sintering temperatures higher than 620 ℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550 ℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-IZr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.展开更多
Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, ...Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).展开更多
This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an eq...This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.展开更多
Although the story continuation writing task(SCWT) has attracted much research attention, few studies have investigated the construct of the task, particularly with respect to which language competence it focuses on. ...Although the story continuation writing task(SCWT) has attracted much research attention, few studies have investigated the construct of the task, particularly with respect to which language competence it focuses on. In addition, although some studies have demonstrated that China’s Standards of English Language Ability(CSE) provides comprehensive insights into the development of Chinese learners’ English language proficiency, little research has investigated the relationship between CSE and SCWT. This study drew upon the CSE to develop an SCWT language use inventory to address the above research gaps. A total of 358 high school students were asked to complete the questionnaire, of which 277 valid responses were analyzed. Exploratory factor analysis(EFA) on the CSE-based questionnaire revealed the presence of six factors, namely language correctness, language variety, task planning, connecting-and-generating, selecting-andmining, and organizing. The strategy of connecting-and-generating was the only significant predictor of the learners’ SCWT scores. The paper also discusses the findings relating to the SCWT rating and other integrated writing tasks.展开更多
The formation mechanism for the equilateral triangle structure of Lia cluster is proposed. The curve of the total energy versus the interatomic distance for this structure has been calculated by using the method of Go...The formation mechanism for the equilateral triangle structure of Lia cluster is proposed. The curve of the total energy versus the interatomic distance for this structure has been calculated by using the method of Gou's Modified Arrangement Channel Quantum Mechanics. The result shows that the curve has a minimal energy of-22.338 60 a.u at R = 5.82 ao. The total energy of Lia when R approaches co has the value of-22.284 09 a.u. This is also the total energy of three lithium atoms dissociated from Lia. The difference value of 0.0545 08 a.u. for the above two energy values is the dissociation energy of Li3 cluster, which is also its binding energy. Therefore the binding energy per lithium atom for Lia is 0.018 169 a.u. = 0.494 eV, which is greater than the binding energy of 0.453 eV per atom for Li2 calculated in a previous work. This means that the Li3 cluster may be formed in the equilateral triangle structure of side length R = 5.82ao stably with a stronger binding from the symmetrical interaction among the three lithium atoms.展开更多
Cu−2Cr−1Nb alloy was fabricated by spark plasma sintering(SPS)using close coupled argon-atomized alloy powder as the raw material.The optimal SPS parameters obtained using the L9(3^(4))orthogonal test were 950℃,50 MP...Cu−2Cr−1Nb alloy was fabricated by spark plasma sintering(SPS)using close coupled argon-atomized alloy powder as the raw material.The optimal SPS parameters obtained using the L9(3^(4))orthogonal test were 950℃,50 MPa and 15 min,and the relative density of the as-sintered alloy was 99.8%.The rapid densification of SPS effectively inhibited the growth of the Cr_(2)Nb phase,and the atomized powder microstructure was maintained in the grains of the alloy matrix.Uniformly distributed multi-scale Cr_(2)Nb phases with grain sizes of 0.10−0.40μm and 20−100 nm and fine grains of alloy matrix with an average size of 3.79μm were obtained.After heat treatment at 500℃ for 2 h,the room temperature tensile strength,electrical conductivity,and thermal conductivity of the sintered Cu−2Cr−1Nb alloy were 332 MPa,86.7%(IACS),and 323.1 W/(m·K),respectively,and the high temperature tensile strength(700℃)was 76 MPa.展开更多
This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,...This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,30 MPa,10 min,and 200℃/min.The tribology test was run with ball-on-disc tribometer using steel ball as the counter body.And the thermal test was processed with thermogravimetric analyzer(TGA)and laser flash apparatus(LFA).Results showed that the addition of 8 wt.%CNTs and 8 wt.%Nb reinforcements respectively decreased the coefficient of friction(COF)of the composite by 79%.The wear volume of the composite was decreased by 23%,and so was the wear rate.However,the thermal conductivity of the composite was equally improved by 44%.The tribology improvement was stimulated by a C film generated by CNTs and a protective Nb2O5 formed by Nb nanopowder.The thermal conductivity was improved by the grain refining property of Nb and the high thermal conductivity of CNTs.Therefore,these results indicated that Al-CNTs-Nb composite is a robust material for high transmission conductor capable of reducing sag and ensuring the durability of the composite.展开更多
Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructur...Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.展开更多
To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanica...To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanical and corrosionproperties of the composites were investigated utilizing X-ray diffraction(XRD),scanning electron microscope(SEM),mechanicaltests and electrochemical tests.Results show that all sintered composites are mainly composed ofβ-Ti matrix,α-Ti andmetal?ceramic phases(CaO,CaTiO3,CaZrO3,TixPy,etc).Besides,some residual hydroxyapatites emerge in the composites(15%and20%HA).The compressive strengths of the composites are over1400MPa and the elastic moduli of composites((5%?15%)HA)present appropriate values(46?52GPa)close to that of human bones.The composite with15%HA exhibits low corrosion currentdensity and passive current density in Hank's solution by electrochemical test,indicating good corrosion properties.Therefore,Ti?35Nb?7Zr?15HA composite might be an alternative material for orthopedic implant applications.展开更多
基金Project(N110323017) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E2010001390) supported by the Natural Science Foundation of Hebei Province,China
文摘The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear ternary compound(T phase),whose chemical formula is(Mg1-xZnx)11Ce.The range of Zn content in T phase is from 9.6% to 43.6%(molar fraction).The crystal structure of T phase is C-centered orthorhombic lattice with lattice parameters of a=0.96-1.029 nm,b=1.115-1.204 nm,c=0.940-1.015 nm.And the lattice parameters of T phase are decreasing a little with increasing Zn content.According to the results of composition and crystal structure,the maximal solubility of Zn in Mg12Ce is about 7.8%(molar fraction),and the chemical formula of the solid solution can be identified as(Mg1-xZnx)12Ce.The isothermal section of Mg-Zn-Ce system in Mg-rich corner at 400 ℃ was constructed.
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
基金Project(NCET-10-0364)supported by the Program for New Century Excellent Talents in University,ChinaProject(2012ZG0006)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51174095)supported the National Natural Science Foundation of China
文摘Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.
基金Project (50871084) supported by the National Natural Science Foundation of ChinaProject (2009AA032601) supported by the National High Technology Research and Development Program of China
文摘Fe3Al alloys with nearly full density were fabricated by plasma activated sintering(PAS) and hot pressing(HP) from mechanical alloyed Fe-28%Al(mole fraction) powders,respectively.It is found that A2-type Fe3Al alloys were obtained by PAS,and they had a heterogeneous grain size distribution,most areas had a grain size smaller than 500 nm,and other areas had a grain size of about 1 μm.Different to PAS,D03-type Fe3Al alloys with a grain size of of 1-2 μm were obtained by HP.The compression testing results show that yield strength values of Fe3Al alloys fabricated by PAS and HP are almost equal at an elevated temperature,and the compression yield strength was about 100 MPa for all at 800 ℃.The room temperature compression ductility of Fe3Al alloys by PAS was about 20%,which was superior to that of Fe3Al alloys prepared by HP and casting.
基金Project (51001040) supported by the National Natural Science Foundation of China
文摘A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties was studied.The results show that the morphology of mechanical milling powder is regular with size in a range of 5-30 μm.Main phases of γ-TiAl,α2-Ti3Al and few B2 phase are observed in the SPS bulk samples.For samples sintered at 1150 °C,equiaxed crystal grain microstructure is achieved with size in a range of 300 nm-1 μm.With increasing SPS temperature to 1250 °C,the size of equiaxed crystal grains obviously increases,the microhardness decreases from HV592 to HV535,and the bending strength decreases from 605 to 219 MPa.Meantime,the compression fracture strength also decreases from 2601 to 1905 MPa,and the strain compression decreases from 28.95% to 12.09%.
基金Project (51001040) supported by the National Natural Science Foundation of ChinaProject (HITQNJS.2009.022) supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology, China
文摘A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture.
基金Prject(20111D0503200316)supported by the Programme for Peking Excellent Talents in University,ChinaProject(613135)supported by 973 Defence Plan of China
文摘TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.
基金Projects(51671152,51874225)supported by the National Natural Science Foundation of ChinaProject(2020ZDLGY13-10)supported by Shaanxi Provincial Science and Technology,China。
文摘Ti185 alloy is widely used in key industrial fields such as aerospace due to its excellent mechanical properties.The traditional method of preparing Ti185 alloy will inevitably appear“βfleck”,resulting in the decrease of mechanical properties,and the high price of V element limits the wide application of Ti185.In this paper,a low-cost master alloy V-Fe powder is used,a dense block is prepared by spark plasma sintering(SPS)technology,and a high-performance Ti185 alloy is prepared by controlling the sintering parameters.XRD and SEM were used to investigate the phase and microstructure of the samples prepared under different parameters.The compressive strength and friction properties of the directly prepared samples were studied.The samples with a sintering temperature of 1350 ℃ and a holding time of 30 min exhibited the most excellent comprehensive performance,with the highest compressive strength and lowest friction coefficient of 1931.59 MPa and 0.47,respectively.
基金Project(2014DFA50860) supported by the International Science & Technology Cooperation Program of Ministry of Science and Technology of China
文摘50 vol.% SiCp/Al composites with high thermal and mechanical properties were successfully produced by spark plasma sintering technique. The influences of sintering temperature on the thermal conductivity, coefficient of thermal expansion and bending strength of the SiCp/Al composites were carefully investigated. The results show that the SiCp/Al composites sintered at 520℃ exhibits a thermal conductivity of 189 W/(m·K), a coefficient of thermal expansion (50.200℃) of 10.03×10^-6 K^-1 and a bending strength of 649 MPa. The high thermal and mechanical properties can be ascribed to the nearly full density and the well interfacial bonding between the alloy matrix and the SiC particles. This work provides a promising pathway for producing materials to meet the needs of high performance electronic packaging.
基金Project(ARP-28-122) supported by King Abdul Aziz City for Science and Technology (KAC ST) of Kingdom of Saudi Arabia
文摘Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620 ℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600 ℃. Its sinterability is improved at a temperature of 620 ℃ whereas sintering temperatures higher than 620 ℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550 ℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-IZr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.
基金Project (51374039) supported by the National Natural Science Foundation of ChinaProject (613135) supported by National Security Basic Research Program of China
文摘Si/Al composites with different Si contents for electronic packaging were prepared by spark plasma sintering (SPS) technique. Properties of the composites were investigated, including density, thermal conductivity, coefficient of thermal expansion and flexural strength. The effects of the Si content on microstructure and thermal and mechanical properties of the composites were studied. The results show that the Si/Al composites consist of Si and Al components and Al uniformly distributes among Si grains. The relative density of the Si/Al composites gradually increases with the decrease of Si content and reaches 98.0% when the Si content is 50%. The thermal conductivity, the coefficient of thermal expansion and the flexural strength of the composite all decrease with the increase of the Si content, and an optimal matching of them is obtained when the Si content is 60%(volume fraction).
基金The Mexican Council of Science and Technology (CONACYT) for the support received under the scholarship (449474)
文摘This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.
文摘Although the story continuation writing task(SCWT) has attracted much research attention, few studies have investigated the construct of the task, particularly with respect to which language competence it focuses on. In addition, although some studies have demonstrated that China’s Standards of English Language Ability(CSE) provides comprehensive insights into the development of Chinese learners’ English language proficiency, little research has investigated the relationship between CSE and SCWT. This study drew upon the CSE to develop an SCWT language use inventory to address the above research gaps. A total of 358 high school students were asked to complete the questionnaire, of which 277 valid responses were analyzed. Exploratory factor analysis(EFA) on the CSE-based questionnaire revealed the presence of six factors, namely language correctness, language variety, task planning, connecting-and-generating, selecting-andmining, and organizing. The strategy of connecting-and-generating was the only significant predictor of the learners’ SCWT scores. The paper also discusses the findings relating to the SCWT rating and other integrated writing tasks.
文摘The formation mechanism for the equilateral triangle structure of Lia cluster is proposed. The curve of the total energy versus the interatomic distance for this structure has been calculated by using the method of Gou's Modified Arrangement Channel Quantum Mechanics. The result shows that the curve has a minimal energy of-22.338 60 a.u at R = 5.82 ao. The total energy of Lia when R approaches co has the value of-22.284 09 a.u. This is also the total energy of three lithium atoms dissociated from Lia. The difference value of 0.0545 08 a.u. for the above two energy values is the dissociation energy of Li3 cluster, which is also its binding energy. Therefore the binding energy per lithium atom for Lia is 0.018 169 a.u. = 0.494 eV, which is greater than the binding energy of 0.453 eV per atom for Li2 calculated in a previous work. This means that the Li3 cluster may be formed in the equilateral triangle structure of side length R = 5.82ao stably with a stronger binding from the symmetrical interaction among the three lithium atoms.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0301300)Innovation Driven Project of Central South University,China (No.2015CX004)+1 种基金State Key Laboratory of Powder Metallurgy,Central South University,Chinathe Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,China (No.HKDNM201907)。
文摘Cu−2Cr−1Nb alloy was fabricated by spark plasma sintering(SPS)using close coupled argon-atomized alloy powder as the raw material.The optimal SPS parameters obtained using the L9(3^(4))orthogonal test were 950℃,50 MPa and 15 min,and the relative density of the as-sintered alloy was 99.8%.The rapid densification of SPS effectively inhibited the growth of the Cr_(2)Nb phase,and the atomized powder microstructure was maintained in the grains of the alloy matrix.Uniformly distributed multi-scale Cr_(2)Nb phases with grain sizes of 0.10−0.40μm and 20−100 nm and fine grains of alloy matrix with an average size of 3.79μm were obtained.After heat treatment at 500℃ for 2 h,the room temperature tensile strength,electrical conductivity,and thermal conductivity of the sintered Cu−2Cr−1Nb alloy were 332 MPa,86.7%(IACS),and 323.1 W/(m·K),respectively,and the high temperature tensile strength(700℃)was 76 MPa.
基金Centre for Energy and Electric Power (CEEP), Tshwane University of Technology, Pretoria, NRF and DHET for providing financial aid to this project
文摘This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,30 MPa,10 min,and 200℃/min.The tribology test was run with ball-on-disc tribometer using steel ball as the counter body.And the thermal test was processed with thermogravimetric analyzer(TGA)and laser flash apparatus(LFA).Results showed that the addition of 8 wt.%CNTs and 8 wt.%Nb reinforcements respectively decreased the coefficient of friction(COF)of the composite by 79%.The wear volume of the composite was decreased by 23%,and so was the wear rate.However,the thermal conductivity of the composite was equally improved by 44%.The tribology improvement was stimulated by a C film generated by CNTs and a protective Nb2O5 formed by Nb nanopowder.The thermal conductivity was improved by the grain refining property of Nb and the high thermal conductivity of CNTs.Therefore,these results indicated that Al-CNTs-Nb composite is a robust material for high transmission conductor capable of reducing sag and ensuring the durability of the composite.
基金Projects(51464010,51461014)supported by the National Natural Science Foundation of ChinaProject(20165207)supported by the Natural Science Foundation of Hainan Province,China
文摘Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.
基金Project(31160262)supported by the National Natural Science Foundation of ChinaProject(2013DH012)supported by the Innovation Platform Construction Project of Science and Technology of Yunnan Province,China
文摘To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanical and corrosionproperties of the composites were investigated utilizing X-ray diffraction(XRD),scanning electron microscope(SEM),mechanicaltests and electrochemical tests.Results show that all sintered composites are mainly composed ofβ-Ti matrix,α-Ti andmetal?ceramic phases(CaO,CaTiO3,CaZrO3,TixPy,etc).Besides,some residual hydroxyapatites emerge in the composites(15%and20%HA).The compressive strengths of the composites are over1400MPa and the elastic moduli of composites((5%?15%)HA)present appropriate values(46?52GPa)close to that of human bones.The composite with15%HA exhibits low corrosion currentdensity and passive current density in Hank's solution by electrochemical test,indicating good corrosion properties.Therefore,Ti?35Nb?7Zr?15HA composite might be an alternative material for orthopedic implant applications.