A two-stage method for image segmentation based on edge and region information is proposed. Different deformation schemes are used at two stages for segmenting the object correctly in image plane. At the first stage, ...A two-stage method for image segmentation based on edge and region information is proposed. Different deformation schemes are used at two stages for segmenting the object correctly in image plane. At the first stage, the contour of the model is divided into several segments hierarchically that deform respectively using affine transformation. After the contour is deformed to the approximate boundary of object, a fine match mechanism using statistical information of local region to redefine the external energy of the model is used to make the contour fit the object's boundary exactly. The algorithm is effective, as the hierarchical segmental deformation makes use of the globe and local information of the image, the affine transformation keeps the consistency of the model, and the reformative approaches of computing the internal energy and external energy are proposed to reduce the algorithm complexity. The adaptive method of defining the search area at the second stage makes the model converge quickly. The experimental results indicate that the proposed model is effective and robust to local minima and able to search for concave objects.展开更多
基金Sponsored by Shanghai Leading Academic Discipline Project(Grant No T0603)the National Natural Science Foundation of China (Grant No60271033)
文摘A two-stage method for image segmentation based on edge and region information is proposed. Different deformation schemes are used at two stages for segmenting the object correctly in image plane. At the first stage, the contour of the model is divided into several segments hierarchically that deform respectively using affine transformation. After the contour is deformed to the approximate boundary of object, a fine match mechanism using statistical information of local region to redefine the external energy of the model is used to make the contour fit the object's boundary exactly. The algorithm is effective, as the hierarchical segmental deformation makes use of the globe and local information of the image, the affine transformation keeps the consistency of the model, and the reformative approaches of computing the internal energy and external energy are proposed to reduce the algorithm complexity. The adaptive method of defining the search area at the second stage makes the model converge quickly. The experimental results indicate that the proposed model is effective and robust to local minima and able to search for concave objects.