In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 na...In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.展开更多
[Objective] The aim of this study was to elucidate the quantitative traits of plants mutagenized by ion beam. [Method] The particular variation phenotypes, a- gronomic traits, and protein and wet gluten contents of pr...[Objective] The aim of this study was to elucidate the quantitative traits of plants mutagenized by ion beam. [Method] The particular variation phenotypes, a- gronomic traits, and protein and wet gluten contents of progenies derived from the same ion beam induced mutant were investigated. [Result] Morphological polymor- phism existed in some individuals. Plant height, spike length and protein content were significantly influenced by ion beam, and effective tiller number and wet gluten content were moderately influenced. Multiple comparisons of all the indices within groups indicated genomic instability among these groups. Coefficient of variation im- plied the differences within group were very low. [Conclusion] Ion beam irradiation displayed characteristics of multi-directivity and non-directiveness. It aroused multiple variations in the same mutant. Instability among progeny indicates cells had different fate even in the same irradiated tissue. It may take several generations for mutants to stabilize particular phenotypes. The effects of ion beam irradiation may be the in- terrelated direct irradiation damage, indirect irradiation damage and late effect, such as bystander effect and adaptive response.展开更多
A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and ...A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.展开更多
To examine the protection against reinforcement corrosion due to the combined action of CO2 and chlorides, experimental results of the evaluation of a study with three types of cement are presented. The study was perf...To examine the protection against reinforcement corrosion due to the combined action of CO2 and chlorides, experimental results of the evaluation of a study with three types of cement are presented. The study was performed observing the behavior of reinforcements which were put in samples submitted to accelerated carbonatation tests and accelerated tests under the effect of chlorides. For the evaluation, intensity corrosion measurements were used using the Pr (polarization resistance) technique, employing these measures as a deterioration indicator. Three types of cement available in the national market were used. The obtained results enabled the classification of the used cements, comparing their profile behaviors in the conditions of the proposed tests.展开更多
Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity...Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.展开更多
Fiber reinforced plastics (i. e. FRP) rebars are one kind of high-performance composite materi- als used in concrete structures of civil engineering. Compared with ordinary steel rebars, FRP rebars have the characteri...Fiber reinforced plastics (i. e. FRP) rebars are one kind of high-performance composite materi- als used in concrete structures of civil engineering. Compared with ordinary steel rebars, FRP rebars have the characteristics of high tensile strength, an- tisepsis, light weight, low elastics modulus and low shear strength, et al. At present time, FRP re- bars have been studied and applied in Europe, America and Japan Since 2000, in the Fund of NS- FC, we systematically carried out experimental and theoretical studies on FRP rebars The progress of our research is briefly introduced in this paper.展开更多
In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-part...In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-particle model(BPM),which is suitable to simulate the fracture process of RC under explosive load,has been developed in the frame of discrete element method (DEM).In this model,only the elastic deformations of beams between concrete particles were considered.The matrix displacement method(MDM)was employed to describe the relationship between the deformation and forces of the beam.A fracture criterion expressed by stress was suggested to identify the state of the beam.A BPM for steel bar,which can simulate the deformation of steel bar under high loading rate,was also developed based on the Cowper-Symonds theory.A program has been coded using C++language.Experiments of RC slab under explosive load were carried out using the program.Good agreement was achieved between the experimental and simulated results.It is indicated that the proposed theoretical model can well simulate the fracture characteristics of RC slab under explosive load such as blasting pit formation,cracks extension, spallation formation,etc.展开更多
基金financial support of National Research Foundation and effort by the Surface Engineering Research Centre (SERC)
文摘In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.
基金Supported by National Natural Science Foundation of China (30800204)Basic and Frontier Technology Research Program of Henan Province (102300413206)~~
文摘[Objective] The aim of this study was to elucidate the quantitative traits of plants mutagenized by ion beam. [Method] The particular variation phenotypes, a- gronomic traits, and protein and wet gluten contents of progenies derived from the same ion beam induced mutant were investigated. [Result] Morphological polymor- phism existed in some individuals. Plant height, spike length and protein content were significantly influenced by ion beam, and effective tiller number and wet gluten content were moderately influenced. Multiple comparisons of all the indices within groups indicated genomic instability among these groups. Coefficient of variation im- plied the differences within group were very low. [Conclusion] Ion beam irradiation displayed characteristics of multi-directivity and non-directiveness. It aroused multiple variations in the same mutant. Instability among progeny indicates cells had different fate even in the same irradiated tissue. It may take several generations for mutants to stabilize particular phenotypes. The effects of ion beam irradiation may be the in- terrelated direct irradiation damage, indirect irradiation damage and late effect, such as bystander effect and adaptive response.
基金The National Natural Science Foundation of China(No.51508162)
文摘A reliability-based quantitative durability design methodology is presented for reinforced concrete(RC)structures in the marine environment on the basis of natural exposure data derived from four berths(1.5,1.5,4 and 15 years)of a concrete port.More than 200 chloride profiles are obtained and analyzed.The relationship between nominal surface chloride ion concentration and altitude is discussed.Subsequently,the formula of the apparent chloride diffusion coefficient is proposed with consideration of the surrounding temperature,sodium chloride solution concentration,age factor and altitude.Then,the reliability-based method to predict the durability of RC structures is developed according to Fick s second law.Relationships between the predicted penetration depth of the chloride ion,the ratio of the wetting time per-period and the corresponding altitude are discussed.Subsequently,the environmental zonation methodology is established for concrete structures under a marine chloride environment by considering the ratio of the wetting time per-period of concrete as the zoning index.Finally,the corres-ponding durability design method for each zone level is established,which contains the durability design regulations of the specimen,and correction coefficients for different water/binder ratios,ages,temperatures and chloride ion concentrations.
文摘To examine the protection against reinforcement corrosion due to the combined action of CO2 and chlorides, experimental results of the evaluation of a study with three types of cement are presented. The study was performed observing the behavior of reinforcements which were put in samples submitted to accelerated carbonatation tests and accelerated tests under the effect of chlorides. For the evaluation, intensity corrosion measurements were used using the Pr (polarization resistance) technique, employing these measures as a deterioration indicator. Three types of cement available in the national market were used. The obtained results enabled the classification of the used cements, comparing their profile behaviors in the conditions of the proposed tests.
基金the National Science Foundation of the United States(Nos.1932690 and 1761697)。
文摘Calcium sulfoaluminate cement(CSAC),first developed in China in the 1970 s,has received significant attention because of its expansive(or shrinkage-compensating)and rapid-hardening characteristics,low energy-intensity,and low carbon emissions.The production and hydration of CSAC(containing ye’elimite,belite,calcium sulfate,and minors)have been extensively studied,but aspects of its durability are not well understood.Due to its composition and intrinsic characteristics,CSAC concrete is expected to have better performance than Portland cement(PC)concrete in several aspects,including shrinkage and cracking due to restrained shrinkage,freeze-thaw damage,alkali-silica reaction,and sulfate attack.However,there is a lack of consensus among researchers regarding transport properties,resistance to carbonation,and steel corrosion protectiveness of CSAC concrete,all of which are expected to be tied to the chemical composition of CSAC and attributes of the service environments.For example,CASC concrete has poorer resistance to carbonation and chloride penetration compared with its PC counterpart,yet some studies have suggested that it protects steel rebar well from corrosion when exposed to a marine tidal zone,because of a strong self-desiccation effect.This paper presents a succinct review of studies of the durability of CSAC concrete.We suggest that more such studies should be conducted to examine the long-term performance of the material in different service environments.Special emphasis should be given to carbonation and steel rebar corrosion,so as to reveal the underlying deterioration mechanisms and establish means to improve the performance of CSAC concrete against such degradation processes.
基金Support for this research by the Fund of Rising-Star Plan of Shanghai Scientific and Technical Committee(No.02QF14047)the Fund of National Natural Science Foundation of China(No.50008012)is gratefully acknowledged.
文摘Fiber reinforced plastics (i. e. FRP) rebars are one kind of high-performance composite materi- als used in concrete structures of civil engineering. Compared with ordinary steel rebars, FRP rebars have the characteristics of high tensile strength, an- tisepsis, light weight, low elastics modulus and low shear strength, et al. At present time, FRP re- bars have been studied and applied in Europe, America and Japan Since 2000, in the Fund of NS- FC, we systematically carried out experimental and theoretical studies on FRP rebars The progress of our research is briefly introduced in this paper.
基金supported by the National Natural Science Foundation of China(Grant No.51044003)the National Basic Research Program of China("973"Project)(Grant No.2007CB714104)
文摘In the field of disaster prevention mitigation and protection engineering,it is important to identify the mechanical behaviors of reinforced concrete(RC)under explosive load by simulation.A three dimensional beam-particle model(BPM),which is suitable to simulate the fracture process of RC under explosive load,has been developed in the frame of discrete element method (DEM).In this model,only the elastic deformations of beams between concrete particles were considered.The matrix displacement method(MDM)was employed to describe the relationship between the deformation and forces of the beam.A fracture criterion expressed by stress was suggested to identify the state of the beam.A BPM for steel bar,which can simulate the deformation of steel bar under high loading rate,was also developed based on the Cowper-Symonds theory.A program has been coded using C++language.Experiments of RC slab under explosive load were carried out using the program.Good agreement was achieved between the experimental and simulated results.It is indicated that the proposed theoretical model can well simulate the fracture characteristics of RC slab under explosive load such as blasting pit formation,cracks extension, spallation formation,etc.