A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in ...A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in construction. The moment from superstructure can be effectively transferred to substructure, and the plates provided for shear transferring can withstand the majority of total horizontal force. With static cyclic loading test, useful experimental data is obtained on the new type of connection of steel superstructure and concrete substructure. As a result, the stress transfer mechanism of the rigid connection can be made clearly and the seismic performance of this structure can also be clarified. Compared computed strength and ductility with actual results, it can be found that this type of connection has good energy absorption capacity in spite of large displacement and no local buckling arises at the locations where stress concentration occurs. Because of doing away with the expensive bearing, this new type of composite structure can be expected to construct a bridge with high seismic resistant capacity thus saving in total construction cost.展开更多
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve...In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.展开更多
An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effec...An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.展开更多
In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, t...In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.展开更多
Synthetic fibers made from nylon or polypropylene have gained application when loose and woven into geo textile form although no information on the matrix’s mechanical performance is obtained so that more understandi...Synthetic fibers made from nylon or polypropylene have gained application when loose and woven into geo textile form although no information on the matrix’s mechanical performance is obtained so that more understanding of their structural contribution to resist cracking can be determined. This paper presents the results of an experimental investigation to determine the performance characteristics of concrete reinforced with a polypropylene structural fiber. In this investigation “Fiber mesh” brand of fibers manufactured by SL Concrete System, Tennessee, USA and marketed by M/S Millennium Building System, Inc., Ban-galore, India are used. The lengths of the fibers used were 24 mm. Fiber dosages used were 0.9, 1.8, 2.7 kg/m3. A total of three mixtures, one for each fiber dosage were made. A standard slump cone test was conducted on the fresh concrete mix with and without fibers to determine the workability of the mix. The test program included the evaluation of hardened concrete properties such as compressive, split tensile, modulus of rupture and flexural strengths. The increase in compressive strength is about 36.25%, 26.20%, and 23.75% respectively that of plain concrete. This increase in strength was directly proportional to amount of fibers present in the mix. The increase in flexural strength for Mixes I^III is about 21%, 16.6%, and 23% respectively that of plain concrete specimens. An experimental investigation was also made to study the behaviors of reinforced fibers concrete beams (with longitudinal reinforcements) under two-point loading. The deflection and crack patterns were also studied. The improvements in strength and ductility characteristics were discussed.展开更多
Geogrid has been extensively used in geotechnical engineering practice due to its effectiveness and economy. Deep insight into the interaction between the backfill soil and the geogrid is of great importance for prope...Geogrid has been extensively used in geotechnical engineering practice due to its effectiveness and economy. Deep insight into the interaction between the backfill soil and the geogrid is of great importance for proper design and construction of geogrid reinforced earth structures. Based on the calibrated model of sand and geogrid, a series of numerical pullout tests are conducted using PFC^(3D) under special considerations of particle angularity and aperture geometry of the geogrid. In this work, interface characteristics regarding the displacement and contact force developed among particles and the deformation and force distribution along the geogrid are all visualized with PFC^(3D) simulations so that new understanding on how geogrid-soil interaction develops under pullout loads can be obtained. Meanwhile, a new variable named fabric anisotropy coefficient is introduced to evaluate the inherent relationship between macroscopic strength and microscopic fabric anisotropy. A correlation analysis is adopted to compare the accuracy between the newly-proposed coefficient and the most commonly used one. Furthermore, additional pullout tests on geogrid with four different joint protrusion heights have been conducted to investigate what extent and how vertical reinforcement elements may result in reinforcement effects from perspectives of bearing resistance contribution, energy dissipation, as well as volumetric response. Numerical results show that both the magnitude and the directional variation of normal contact forces govern the development of macroscopic strength and the reinforcing effects of joint protrusion height can be attributed to the accelerated energy dissipation across the particle assembly and the intensive mobilization of the geogrid.展开更多
文摘A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in construction. The moment from superstructure can be effectively transferred to substructure, and the plates provided for shear transferring can withstand the majority of total horizontal force. With static cyclic loading test, useful experimental data is obtained on the new type of connection of steel superstructure and concrete substructure. As a result, the stress transfer mechanism of the rigid connection can be made clearly and the seismic performance of this structure can also be clarified. Compared computed strength and ductility with actual results, it can be found that this type of connection has good energy absorption capacity in spite of large displacement and no local buckling arises at the locations where stress concentration occurs. Because of doing away with the expensive bearing, this new type of composite structure can be expected to construct a bridge with high seismic resistant capacity thus saving in total construction cost.
基金The Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (NoIRT0518)
文摘In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.
基金The Key Science Foundation of Liaoning ProvincialCommunications Department (No.0101).
文摘An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.
基金The National Natural Science Foundation of China(No.51138002)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201452)the Open Fund of Shanghai Key Laboratory of Engineering Structure Safety(No.2015-KF06)
文摘In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.
文摘Synthetic fibers made from nylon or polypropylene have gained application when loose and woven into geo textile form although no information on the matrix’s mechanical performance is obtained so that more understanding of their structural contribution to resist cracking can be determined. This paper presents the results of an experimental investigation to determine the performance characteristics of concrete reinforced with a polypropylene structural fiber. In this investigation “Fiber mesh” brand of fibers manufactured by SL Concrete System, Tennessee, USA and marketed by M/S Millennium Building System, Inc., Ban-galore, India are used. The lengths of the fibers used were 24 mm. Fiber dosages used were 0.9, 1.8, 2.7 kg/m3. A total of three mixtures, one for each fiber dosage were made. A standard slump cone test was conducted on the fresh concrete mix with and without fibers to determine the workability of the mix. The test program included the evaluation of hardened concrete properties such as compressive, split tensile, modulus of rupture and flexural strengths. The increase in compressive strength is about 36.25%, 26.20%, and 23.75% respectively that of plain concrete. This increase in strength was directly proportional to amount of fibers present in the mix. The increase in flexural strength for Mixes I^III is about 21%, 16.6%, and 23% respectively that of plain concrete specimens. An experimental investigation was also made to study the behaviors of reinforced fibers concrete beams (with longitudinal reinforcements) under two-point loading. The deflection and crack patterns were also studied. The improvements in strength and ductility characteristics were discussed.
基金Projects(51278216,51478201)supported by the National Natural Science Foundation of China
文摘Geogrid has been extensively used in geotechnical engineering practice due to its effectiveness and economy. Deep insight into the interaction between the backfill soil and the geogrid is of great importance for proper design and construction of geogrid reinforced earth structures. Based on the calibrated model of sand and geogrid, a series of numerical pullout tests are conducted using PFC^(3D) under special considerations of particle angularity and aperture geometry of the geogrid. In this work, interface characteristics regarding the displacement and contact force developed among particles and the deformation and force distribution along the geogrid are all visualized with PFC^(3D) simulations so that new understanding on how geogrid-soil interaction develops under pullout loads can be obtained. Meanwhile, a new variable named fabric anisotropy coefficient is introduced to evaluate the inherent relationship between macroscopic strength and microscopic fabric anisotropy. A correlation analysis is adopted to compare the accuracy between the newly-proposed coefficient and the most commonly used one. Furthermore, additional pullout tests on geogrid with four different joint protrusion heights have been conducted to investigate what extent and how vertical reinforcement elements may result in reinforcement effects from perspectives of bearing resistance contribution, energy dissipation, as well as volumetric response. Numerical results show that both the magnitude and the directional variation of normal contact forces govern the development of macroscopic strength and the reinforcing effects of joint protrusion height can be attributed to the accelerated energy dissipation across the particle assembly and the intensive mobilization of the geogrid.