To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of struc...To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.展开更多
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und...Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.50708027)National Key Technology R&D Program of China(Grant No.2006BAJ01B02)
文摘To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.
基金Supported by National Science Fund for Distinguished Young Scholars of China( No. 50425824
文摘Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.