According to the load-structure method, the wall rock with lining can bear the load caused by the surrounding rock, and the rock resistant coefficient (RRC) is a key parameter for evaluating the capacity of this wall ...According to the load-structure method, the wall rock with lining can bear the load caused by the surrounding rock, and the rock resistant coefficient (RRC) is a key parameter for evaluating the capacity of this wall rock. Based on the Mohr-Coulomb yield criterion, this paper develops a formula for calculating the RRC, which has been applied to the real engi-neering project, such as Xiamen Xiang’an East Passage Underwater Tunnel Project. The fact shows that this formula is helpful for designers to determine the RRC value.展开更多
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati...As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.展开更多
Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint ...Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.展开更多
This paper systematiedy expounds the history and present situation of tbe research &application of strip-parttal mining at home and abroad. Tbe prospect of using strip-parttal miningmcthod to mine under balldings ...This paper systematiedy expounds the history and present situation of tbe research &application of strip-parttal mining at home and abroad. Tbe prospect of using strip-parttal miningmcthod to mine under balldings (structures) at the present situation of market economy is also expounded here Strata & surface subsidence mechanism of atrip-partni mining the optimization ofthe width of unit goaf & coal pillar as well as the calculation method of surface subsidence pridictionbased on Holding-Ptate Control Theory and Coal Pillar Long-term Stability, which are our researchachivements in recent years about strata & surface subsidence control in strip-partial mining, arethe main points introdued bere.展开更多
The constitutive laws of the collapse of underground openings in a rock massif were in-vestigated based on the results of laboratory and field experiments, and computations using ana-lytical and numerical models. It i...The constitutive laws of the collapse of underground openings in a rock massif were in-vestigated based on the results of laboratory and field experiments, and computations using ana-lytical and numerical models. It is shown that the principal mechanism of failure of underground openings over important for practice peak particle velocity amplitude range of 1 to 10 m/s is the roof and wall breakage due to the fall of key blocks. Over this load range the material crushing is of considerably less importance. The geometry of discontinuities influences mainly the stability of key blocks. Further caving depends weakly on block structure of near-tunnel zone. The mean volume of fall material is a rather stable quantity for rock massifs of different structures. Lower tunnel sta-bility in the zones of high fracturing is caused by a higher probability of the presence of the unsta-ble key blocks and the decrease of strength characteristics of fractured bounding blocks. The de-crease of average block size is a less important accompanying factor.展开更多
There are many karst areas within Wuhan-Guangzhou route. Karst grouting is one of the main construction procedures of the sub-grade construction. Through construction art tests,construction principles,water and cement...There are many karst areas within Wuhan-Guangzhou route. Karst grouting is one of the main construction procedures of the sub-grade construction. Through construction art tests,construction principles,water and cementation ratio,grouting construction key points and quality check requirements were determined. Grouting quantity and pressure can be determined according to different geology conditions. Recommendations for quality problems such as bad practicability of grouting,unexpected dissipation of slurry,slurry belching,and overfeeding of slurry going to non-grouting area were proposed.展开更多
The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an el...The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an elastic state and the deep,relatively soft rock may be in a plastic state. However,in the tectonic stress field,the relatively soft rock in the shallow area is in a plastic state and the deep rock in an elastic state. A method is proposed to estimate stress values in coal and soft rock based on in-situ measurements of hard rock. Our estimation method relates to the type of stress field and stress state. The equations of rock stress in various stress states are presented for the elastic,plastic and critical states. The critical state is a special stress state,which indicates the conversion of the elastic to the plastic state in the gravitational stress field and the conversion of the plastic to the elastic state in the tectonic stress field. Two cases stud-ies show that the estimation method is feasible.展开更多
A number of geotechnical analyses were carried out on selected carbonate rock samples from eight sites located in Egypt. This analysis was to assess the suitability of these rocks for building construction aggregate. ...A number of geotechnical analyses were carried out on selected carbonate rock samples from eight sites located in Egypt. This analysis was to assess the suitability of these rocks for building construction aggregate. The analyses included properties of uniaxial compressive strength, tensile strength, porosity, water absorption, and dynamic fragmentation. The success of building construction depends to a large extent on the availability of raw materials at affordable prices. Raw materials commonly used in the building industry include sands, gravels, clays and clay-derived products. Despite the widespread occurrence of carbonate rocks throughout Egypt, the low premium placed on their direct application in the building sector may be explained in two ways: firstly, the lack of awareness of the potential uses of carbonate rocks in the building construction industry(beyond the production of asbestos, ceiling boards, roof sheets and Portland cement); and secondly, the aesthetic application of carbonate rocks in the building construction depends mainly on their physical attributes, a knowledge of which is generally restricted to within the confines of research laboratories and industries. Thus this paper addresses the physical and mechanical characteristics of some Egyptian carbonate rocks, evaluating them for their suitability as building construction aggregates.展开更多
On-land records of subaqueous explosive volcanic eruptions are rarely reported.To understand this phenomenon and discuss its global significance,we studied the geochronology and geochemistry of basaltic tuff and pillo...On-land records of subaqueous explosive volcanic eruptions are rarely reported.To understand this phenomenon and discuss its global significance,we studied the geochronology and geochemistry of basaltic tuff and pillow basalt in the Raohe Complex,NE China.The basaltic tuff consists of well-sorted vitreous,crystal(mostly clinopyroxene),and minor lithic fragments.It is characterized by a high Mg O(15.7–15.9%)content and zero Eu anomalies(Eu/Eu~*=99–102).The tuff erupted at 172±1 Ma based on SHRIMP zircon U-Pb dating,coeval with the previously reported age of the pillow basalt.The pillow basalt has intermediate Mg O content and weakly negative Eu anomalies(Eu/Eu~*=90–99).Based on immobile trace element discrimination,the basaltic tuff and pillow basalt belong to alkali basalt displaying an OIB-type trace element pattern,and consistent Nd isotope signatures ofε_(Nd)(t)=4.4–6.2,indicating an identical mantle source.The pillow basalt has coupled Sr-Nd isotopic values,whereas the basaltic tuff has significantly higher initial^(87)Sr/^(86)Sr values that are similar to synchronous seawater.This indicates that the elemental exchange between the mantle-derived material and seawater most likely occurred in a subaqueous explosive volcanic eruption,rather than in an effusive eruption.Detailed calculations suggest that the high efficiency of the Sr-isotope exchange between seawater and the mantle-derived material triggered by a subaqueous explosive volcanic eruption is likely one of the main reasons for the rapid decrease of the global seawater^(87)Sr/^(86)Sr value.展开更多
文摘According to the load-structure method, the wall rock with lining can bear the load caused by the surrounding rock, and the rock resistant coefficient (RRC) is a key parameter for evaluating the capacity of this wall rock. Based on the Mohr-Coulomb yield criterion, this paper develops a formula for calculating the RRC, which has been applied to the real engi-neering project, such as Xiamen Xiang’an East Passage Underwater Tunnel Project. The fact shows that this formula is helpful for designers to determine the RRC value.
文摘As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.
基金Project 50474064 supported by the National Natural Science Foundation of China
文摘Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.
文摘This paper systematiedy expounds the history and present situation of tbe research &application of strip-parttal mining at home and abroad. Tbe prospect of using strip-parttal miningmcthod to mine under balldings (structures) at the present situation of market economy is also expounded here Strata & surface subsidence mechanism of atrip-partni mining the optimization ofthe width of unit goaf & coal pillar as well as the calculation method of surface subsidence pridictionbased on Holding-Ptate Control Theory and Coal Pillar Long-term Stability, which are our researchachivements in recent years about strata & surface subsidence control in strip-partial mining, arethe main points introdued bere.
基金Supported by the Russian Foundation of Basic Research(No05-08-18081)
文摘The constitutive laws of the collapse of underground openings in a rock massif were in-vestigated based on the results of laboratory and field experiments, and computations using ana-lytical and numerical models. It is shown that the principal mechanism of failure of underground openings over important for practice peak particle velocity amplitude range of 1 to 10 m/s is the roof and wall breakage due to the fall of key blocks. Over this load range the material crushing is of considerably less importance. The geometry of discontinuities influences mainly the stability of key blocks. Further caving depends weakly on block structure of near-tunnel zone. The mean volume of fall material is a rather stable quantity for rock massifs of different structures. Lower tunnel sta-bility in the zones of high fracturing is caused by a higher probability of the presence of the unsta-ble key blocks and the decrease of strength characteristics of fractured bounding blocks. The de-crease of average block size is a less important accompanying factor.
文摘There are many karst areas within Wuhan-Guangzhou route. Karst grouting is one of the main construction procedures of the sub-grade construction. Through construction art tests,construction principles,water and cementation ratio,grouting construction key points and quality check requirements were determined. Grouting quantity and pressure can be determined according to different geology conditions. Recommendations for quality problems such as bad practicability of grouting,unexpected dissipation of slurry,slurry belching,and overfeeding of slurry going to non-grouting area were proposed.
基金Projects 40272114 and 40572160 supported by the National Natural Science Foundation of China
文摘The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an elastic state and the deep,relatively soft rock may be in a plastic state. However,in the tectonic stress field,the relatively soft rock in the shallow area is in a plastic state and the deep rock in an elastic state. A method is proposed to estimate stress values in coal and soft rock based on in-situ measurements of hard rock. Our estimation method relates to the type of stress field and stress state. The equations of rock stress in various stress states are presented for the elastic,plastic and critical states. The critical state is a special stress state,which indicates the conversion of the elastic to the plastic state in the gravitational stress field and the conversion of the plastic to the elastic state in the tectonic stress field. Two cases stud-ies show that the estimation method is feasible.
文摘A number of geotechnical analyses were carried out on selected carbonate rock samples from eight sites located in Egypt. This analysis was to assess the suitability of these rocks for building construction aggregate. The analyses included properties of uniaxial compressive strength, tensile strength, porosity, water absorption, and dynamic fragmentation. The success of building construction depends to a large extent on the availability of raw materials at affordable prices. Raw materials commonly used in the building industry include sands, gravels, clays and clay-derived products. Despite the widespread occurrence of carbonate rocks throughout Egypt, the low premium placed on their direct application in the building sector may be explained in two ways: firstly, the lack of awareness of the potential uses of carbonate rocks in the building construction industry(beyond the production of asbestos, ceiling boards, roof sheets and Portland cement); and secondly, the aesthetic application of carbonate rocks in the building construction depends mainly on their physical attributes, a knowledge of which is generally restricted to within the confines of research laboratories and industries. Thus this paper addresses the physical and mechanical characteristics of some Egyptian carbonate rocks, evaluating them for their suitability as building construction aggregates.
基金supported by the State Ocean Administration National Programme on Global Change and Air-Sea Interaction (Grant No. GASI-GEOGE-02)the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB18000000)National Natural Science Foundation of China (Grant No. 41502194)
文摘On-land records of subaqueous explosive volcanic eruptions are rarely reported.To understand this phenomenon and discuss its global significance,we studied the geochronology and geochemistry of basaltic tuff and pillow basalt in the Raohe Complex,NE China.The basaltic tuff consists of well-sorted vitreous,crystal(mostly clinopyroxene),and minor lithic fragments.It is characterized by a high Mg O(15.7–15.9%)content and zero Eu anomalies(Eu/Eu~*=99–102).The tuff erupted at 172±1 Ma based on SHRIMP zircon U-Pb dating,coeval with the previously reported age of the pillow basalt.The pillow basalt has intermediate Mg O content and weakly negative Eu anomalies(Eu/Eu~*=90–99).Based on immobile trace element discrimination,the basaltic tuff and pillow basalt belong to alkali basalt displaying an OIB-type trace element pattern,and consistent Nd isotope signatures ofε_(Nd)(t)=4.4–6.2,indicating an identical mantle source.The pillow basalt has coupled Sr-Nd isotopic values,whereas the basaltic tuff has significantly higher initial^(87)Sr/^(86)Sr values that are similar to synchronous seawater.This indicates that the elemental exchange between the mantle-derived material and seawater most likely occurred in a subaqueous explosive volcanic eruption,rather than in an effusive eruption.Detailed calculations suggest that the high efficiency of the Sr-isotope exchange between seawater and the mantle-derived material triggered by a subaqueous explosive volcanic eruption is likely one of the main reasons for the rapid decrease of the global seawater^(87)Sr/^(86)Sr value.