期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
清代书院答问的文献价值与文化意义——以李兆洛《暨阳答问》为中心 被引量:1
1
作者 杨珂 徐雁平 《苏州大学学报(哲学社会科学版)》 CSSCI 北大核心 2021年第1期159-167,共9页
《暨阳答问》由清代阳湖派李兆洛的弟子蒋彤撰录,内容涵盖四部,涉及历算、天文、文学诸领域,是清代书院答问的代表之作。该书有繁、简两个版本系统,其中道光活字本为早期繁本,最接近蒋氏手稿,而未得到充分利用。通过分析简本对繁本的删... 《暨阳答问》由清代阳湖派李兆洛的弟子蒋彤撰录,内容涵盖四部,涉及历算、天文、文学诸领域,是清代书院答问的代表之作。该书有繁、简两个版本系统,其中道光活字本为早期繁本,最接近蒋氏手稿,而未得到充分利用。通过分析简本对繁本的删削,得见《暨阳答问》繁本的重要学术价值。《暨阳答问》中多有李兆洛对诗、文等所作分析与评价,可藉以补充李氏文学观,印证已有的学术成果,进而凸显此书对于李兆洛及其弟子群体研究的重要意义,亦可展现清代以常州为代表的东南地域文化传统,而"答问体"作为一种著述形式,其所常见的删润现象亦藉此得到进一步的分析与考察。 展开更多
关键词 《暨阳 李兆洛 书院教育 答问体 版本比较
下载PDF
钱大昕经学研究评述
2
作者 李海生 《安徽大学学报(哲学社会科学版)》 CSSCI 北大核心 2005年第4期92-97,共6页
钱大昕的经学研究采获于惠(栋)、戴(震),却借博学之力,以错综贯串、发人所未发见长,具体体现在经学说论中能据古发幽;答问体或条目例能得拾漏补遗之功,看起来散碎,实不失精当。与制法严整的惠学、戴学集合,收相得益彰之效;分而析之,又... 钱大昕的经学研究采获于惠(栋)、戴(震),却借博学之力,以错综贯串、发人所未发见长,具体体现在经学说论中能据古发幽;答问体或条目例能得拾漏补遗之功,看起来散碎,实不失精当。与制法严整的惠学、戴学集合,收相得益彰之效;分而析之,又自成章法,形成了别开生面的三个特点,简而言之,即胆识过人、针对性极强、形式上有创新。 展开更多
关键词 经学研究 经学说论 答问体 条目例 钱大昕
下载PDF
A multi-attention RNN-based relation linking approach for question answering over knowledge base 被引量:1
3
作者 Li Huiying Zhao Man Yu Wenqi 《Journal of Southeast University(English Edition)》 EI CAS 2020年第4期385-392,共8页
Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural... Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding. 展开更多
关键词 question answering over knowledge base(KBQA) entity linking relation linking multi-attention bidirectional long short-term memory(Bi-LSTM) large-scale complex question answering dataset(LC-QuAD)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部