功率同步控制和矢量控制均是多端柔性直流输电系统(multi-terminal voltage source converter based high voltage direct current transmission,VSC-MTDC)中换流站的可选控制方式。与更加常用的矢量控制方式相比,功率同步控制方式的...功率同步控制和矢量控制均是多端柔性直流输电系统(multi-terminal voltage source converter based high voltage direct current transmission,VSC-MTDC)中换流站的可选控制方式。与更加常用的矢量控制方式相比,功率同步控制方式的原理与同步发电机类似,进而显现了相近的控制特性,更适用于与交流电网的弱连接,有利于交流电网的功角和频率稳定性,但其缺点是在直流侧故障下,换流站会出现较大的直流电压波动,恶化系统的动态特性。为了使换流站能够在不同的电网运行工况下匹配最合适的控制方式,提出一种可切换的控制策略,实现了在同一换流站中功率同步和矢量控制方式并存,并可依据需求实现无扰动自动切换。最后以PSCAD中搭建的三端交直流系统为例,演示和验证了同步切换控制策略的可行性。展开更多
文摘功率同步控制和矢量控制均是多端柔性直流输电系统(multi-terminal voltage source converter based high voltage direct current transmission,VSC-MTDC)中换流站的可选控制方式。与更加常用的矢量控制方式相比,功率同步控制方式的原理与同步发电机类似,进而显现了相近的控制特性,更适用于与交流电网的弱连接,有利于交流电网的功角和频率稳定性,但其缺点是在直流侧故障下,换流站会出现较大的直流电压波动,恶化系统的动态特性。为了使换流站能够在不同的电网运行工况下匹配最合适的控制方式,提出一种可切换的控制策略,实现了在同一换流站中功率同步和矢量控制方式并存,并可依据需求实现无扰动自动切换。最后以PSCAD中搭建的三端交直流系统为例,演示和验证了同步切换控制策略的可行性。