给出一种采用多层次优化技术的XACML(extensible access control markup language)策略评估引擎实现方案MLOBEE(multi-level optimization based evaluation engine).策略判定评估前,对原始策略库实施规则精化,缩减策略规模并调整规则顺...给出一种采用多层次优化技术的XACML(extensible access control markup language)策略评估引擎实现方案MLOBEE(multi-level optimization based evaluation engine).策略判定评估前,对原始策略库实施规则精化,缩减策略规模并调整规则顺序;判定评估过程中,在引擎内部采用多种缓存机制,分别建立判定结果缓存、属性缓存和策略缓存,有效降低判定引擎和其他功能部件的通信损耗.通过两阶段索引实现的策略缓存,可显著降低匹配运算量并提高策略匹配准确率.仿真实验验证了MLOBEE所采用的多层次优化技术的有效性,其整体评估性能明显优于大多数同类系统.展开更多
文摘给出一种采用多层次优化技术的XACML(extensible access control markup language)策略评估引擎实现方案MLOBEE(multi-level optimization based evaluation engine).策略判定评估前,对原始策略库实施规则精化,缩减策略规模并调整规则顺序;判定评估过程中,在引擎内部采用多种缓存机制,分别建立判定结果缓存、属性缓存和策略缓存,有效降低判定引擎和其他功能部件的通信损耗.通过两阶段索引实现的策略缓存,可显著降低匹配运算量并提高策略匹配准确率.仿真实验验证了MLOBEE所采用的多层次优化技术的有效性,其整体评估性能明显优于大多数同类系统.