Security has been regarded as one of the hardest problems in the development of cloud computing. This paper proposes an AllianceAuthentication protocol among Hybrid Clouds that include multiple private clouds and/or p...Security has been regarded as one of the hardest problems in the development of cloud computing. This paper proposes an AllianceAuthentication protocol among Hybrid Clouds that include multiple private clouds and/or public clouds. Mu tual authentication protocol among entities in the IntraCloud and InterCloud is proposed. Blind signature and bilinear mapping of automorphism groups are adopted to achieve the InterCloud Alli anceAuthentication, which overcome the complexi ty of certificate transmission and the problem of communication bottlenecks that happen in tradi tional certificatebased scheme. Blind key, instead of private key, is adopted for register, which avoids展开更多
Due to the compromise of the security of the underlying system or machine stonng the key, exposure of the private key can be a devastating attack on a cryptosystem. Key insulation is an important technique to protect ...Due to the compromise of the security of the underlying system or machine stonng the key, exposure of the private key can be a devastating attack on a cryptosystem. Key insulation is an important technique to protect private keys. To deal with the private (signing) key exposure problem in identity-based signature systems, we propose an identity-based threshold key-insulated signature (IBTKIS) scheme. It strengthens the security and flexibility of existing identity-based key-insulated signature schemes. Our scheme' s security is proven in the random oracle model and rests on the hardness of the computational Diffie-Helhnan problem in groups equipped with a pairing. To the best of our knowledge, it is the first IBTKIS scheme up to now.展开更多
Leakage of the private key has become a serious problem of menacing the cryptosystem security. To reduce the underlying danger induced by private key leakage, Dodis et al.(2003) proposed the first key-insulated signat...Leakage of the private key has become a serious problem of menacing the cryptosystem security. To reduce the underlying danger induced by private key leakage, Dodis et al.(2003) proposed the first key-insulated signature scheme. To handle issues concerning the private key leakage in certificateless signature schemes, we devise the first certificateless key-insulated signature scheme. Our scheme applies the key-insulated mechanism to certificateless cryptography, one with neither certificate nor key escrow. We incorporate Waters (2005)’s signature scheme, Paterson and Schuldt (2006)’s identity-based signature scheme, and Liu et al.(2007)’s certificateless signature scheme to obtain a certificateless key-insulated signature scheme. Our scheme has two desirable properties. First, its security can be proved under the non-pairing-based generalized bilinear Diffie-Hellman (NGBDH) conjecture, without utilizing the random oracle model; second, it solves the key escrow problem in identity-based key-insulated signatures.展开更多
基金the National Natural Science Foundation of China,the Innovation Group Project of Beijing Institute of Technology
文摘Security has been regarded as one of the hardest problems in the development of cloud computing. This paper proposes an AllianceAuthentication protocol among Hybrid Clouds that include multiple private clouds and/or public clouds. Mu tual authentication protocol among entities in the IntraCloud and InterCloud is proposed. Blind signature and bilinear mapping of automorphism groups are adopted to achieve the InterCloud Alli anceAuthentication, which overcome the complexi ty of certificate transmission and the problem of communication bottlenecks that happen in tradi tional certificatebased scheme. Blind key, instead of private key, is adopted for register, which avoids
基金Supported by the National Natural Science Foundation of China (No. 60970111, 61133014, 60903189, 60903020).
文摘Due to the compromise of the security of the underlying system or machine stonng the key, exposure of the private key can be a devastating attack on a cryptosystem. Key insulation is an important technique to protect private keys. To deal with the private (signing) key exposure problem in identity-based signature systems, we propose an identity-based threshold key-insulated signature (IBTKIS) scheme. It strengthens the security and flexibility of existing identity-based key-insulated signature schemes. Our scheme' s security is proven in the random oracle model and rests on the hardness of the computational Diffie-Helhnan problem in groups equipped with a pairing. To the best of our knowledge, it is the first IBTKIS scheme up to now.
基金Project (Nos 60573032, 60773092, 60842002, 60873229, and 90604036) supported by the National Natural Science Foundation of China
文摘Leakage of the private key has become a serious problem of menacing the cryptosystem security. To reduce the underlying danger induced by private key leakage, Dodis et al.(2003) proposed the first key-insulated signature scheme. To handle issues concerning the private key leakage in certificateless signature schemes, we devise the first certificateless key-insulated signature scheme. Our scheme applies the key-insulated mechanism to certificateless cryptography, one with neither certificate nor key escrow. We incorporate Waters (2005)’s signature scheme, Paterson and Schuldt (2006)’s identity-based signature scheme, and Liu et al.(2007)’s certificateless signature scheme to obtain a certificateless key-insulated signature scheme. Our scheme has two desirable properties. First, its security can be proved under the non-pairing-based generalized bilinear Diffie-Hellman (NGBDH) conjecture, without utilizing the random oracle model; second, it solves the key escrow problem in identity-based key-insulated signatures.