Over a fieldF of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector spaceA[D] =A?F[D] from any pair of a commutative associative algebra,A with an identity element...Over a fieldF of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector spaceA[D] =A?F[D] from any pair of a commutative associative algebra,A with an identity element and the polynomial algebraF[D] of a commutative derivation subalgebraD ofA We prove thatA[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only ifA isD-simple andA[D] acts faithfully onA. Thus we obtain a lot of simple algebras.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19801037) a Fund from National Education Ministry of China.
文摘Over a fieldF of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector spaceA[D] =A?F[D] from any pair of a commutative associative algebra,A with an identity element and the polynomial algebraF[D] of a commutative derivation subalgebraD ofA We prove thatA[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only ifA isD-simple andA[D] acts faithfully onA. Thus we obtain a lot of simple algebras.