算力网络(CFN,Computing First Networking)是随着以云计算为代表的传统中心化算力资源下沉到边缘计算的分布式新型算力资源解决方案,是现代数字化社会的发展基础和数字经济时代推动经济高质量发展的新引擎。当前,面向用户服务的传统算...算力网络(CFN,Computing First Networking)是随着以云计算为代表的传统中心化算力资源下沉到边缘计算的分布式新型算力资源解决方案,是现代数字化社会的发展基础和数字经济时代推动经济高质量发展的新引擎。当前,面向用户服务的传统算力网络在大数据时代,协同计算效率低下的劣势日益明显,算力网络亟需转型革新。在分析传统算力网络基础上,进一步探讨分布式形态下算力网络的可研究和落地方向。研究认为:在分布式架构算力网络下引入区块链、边缘计算等技术可以为智慧地球应用提供数字动力;融合区块链技术的分布式云计算底层操作系统,能够让更多有资源优势和运营能力的单位都有机会基于此算力架构更好实现商业落地;分布式算力网络有望成为未来十年最值得期待的信息基础设施变革之一。展开更多
To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based o...To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.展开更多
The residence-time distribution (RTD) and the compartment model were applied to characterizing the flow regions in red mud separation thickener’s feedwells. Combined with the experimental work, validated mathematic...The residence-time distribution (RTD) and the compartment model were applied to characterizing the flow regions in red mud separation thickener’s feedwells. Combined with the experimental work, validated mathematical model as well as three-dimensional computational fluid dynamics (CFD) model was established to analyze the flow regions of feedwells on an industrial scale. The concept of RTD, although a well-known method for the characterization of mixing behavior in conventional mixers and reactors, is still a novel measure for the characterization of mixing in feedwells. Numerical simulation results show that the inlet feed rate and the aspect ratio of feedwells are the most critical parameters which affect the RTD of feedwell. Further simulation experiments were then carried out. Under the optimal operation conditions, the volume fraction of dead zone can reduce by10.8% and an increasement of mixing flow volume fraction by 6.5% is also observed. There is an optimum feed inlet rate depending on the feedwell design. The CFD model in conjunction with the RTD analysis then can be used as an effective tool in the design, evaluation and optimization of thickener feedwell in the red mud separation.展开更多
Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical exa...Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.展开更多
Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentia...Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.展开更多
To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corr...To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value were discussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.展开更多
AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A a...AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A and B) were modeled. Case A was defined with a shorter and almost straight duodenal section, while case B has a much longer and curved duodenal section. Velocity, pressure and food concentration distribution were determined and the numerical results were compared with experimental observations. RESULTS: The pressure distribution obtained by numerical simulation was in the range of the recorded experimental results. Case A had a more favorable pressure distribution in comparison with case B. However, case B had better performance in terms of food transport because of more continual food distribution, as well as better emptying of the duodena section. CONCLUSION: This study offers insight into the transport process within the duodenal stump section after surgical intervention, which can be useful for future patient-specific predictions of a surgical outcome.展开更多
Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simul...Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simulation(DES) with standard SpalartAllmaras(SA) model. The Reynolds number is 4.0×105 in this calculation. The region is three-dimensional. Since the wind barrier and trains are almost invariable cross-sections, only 25 m along the track is modeled. The height of embankment ranges from 1 m to 5 m and the wind barrier is 3 m high. The results show that the wind speed changes obviously before the wind barrier on the horizontal plane, which is 4.5 m high above the track. The speed of wind reduces gradually while approaching the wind barrier. It reaches the minimum value at a distance about 5 m before the wind barrier, and increases dramatically afterwards. The speed of wind at this location is linear with the speed of far field. The train aerodynamic coefficients decrease sharply with the increment of the embankment height. And they take up the monotonicity. Meanwhile, when the height increases from 3 m to 5 m, they just change slightly. It is concluded that the optimum anemometer location is nearly 5 m in front of the wind barrier.展开更多
Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and t...Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.展开更多
To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valle...To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valley were analyzed by using the equivalent-linear model. Statistical analysis was also made to the seismic coefficient, and an empirical formula for calculating the maximum acceleration was provided. The results indicate that under the condition of the same dam height and the same base acceleration excitations, with the increase of the river valley width, the position of the maximum acceleration on the axis of the top of the dam moves from the center to the riversides symmetrically. For the narrow valleys, the maximum acceleration occurs in the middle of the axis at the top of the dam; for wide valleys the maximum acceleration appears near the riversides. The result negates the application of 2D dynamical computation for wide valleys, and shows that for the seismic response of high concrete-faced rockfill dams, the seismic coefficient along the axis should be given, except for that along the dam height. Seismic stability analysis of rockfill dams using pseudo-static method can be modified according to the formula.展开更多
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w...Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.展开更多
Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution insi...Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution inside the cans during thermal processing. A Computational Fluid Dynamics (CFD) model was developed for thermization of milk in the can heating at 65℃ for the first time to determine the temperature distribution in the canned milk at stationary position. This developed CFD model was validated with the experimental measurements of temperature. The effects of thermization temperature on milk flow profile (velocity), milk temperature and viscosity profiles inside the can during thermal process were investigated. Temperature profiles of milk in can at three different planes (i.e. top, middle and bottom plane) were studied. Moreover, thermization unit was calculated by correlating with temperature and it was found that maximum thermization unit was achieved at 540 s of thermal processing of milk in can.展开更多
Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thru...Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.展开更多
Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recover...Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.展开更多
An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm ...An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm × 4.5 mm each, equally spaced 2 or 10 mm apart, were sintered in one batch at 620 °C for 40 min in a tube furnace. The pore distribution in the selected cross section of sintered samples was found to be dependent on the sample separation distance and the distance from the cross section examined to the sample end. A three-dimensional (3D) CFD model was developed to investigate the nitrogen gas behavior near each sintering surface of the three samples during isothermal sintering. The variation in porosity in the cross section of each sintered sample along sample length was found to be closely related to the nitrogen gas flow field near the sintering surfaces.展开更多
Within the framework of the embedded-atom method, we performed molecular-dynamics calculations to investigate the structural transformation during melting of two copper clus- ters containing 57 and 58 atoms. The simul...Within the framework of the embedded-atom method, we performed molecular-dynamics calculations to investigate the structural transformation during melting of two copper clus- ters containing 57 and 58 atoms. The simulation results reveal how their different structural changes can strongly influence internal energy and radial distribution functions. The local structural patterns of different regions during the temperature increase, determined by atom density profiles, are identified for the melting of each cluster. The simulations show sensi- tivities of the structural changes for these two small size clusters with different structures.展开更多
In this work, experiment efforts were devoted to study the effect of the longitudinal slope of channel on the discharge coefficient for ogee spillway and broad crested weir. A comprehensive laboratory study including ...In this work, experiment efforts were devoted to study the effect of the longitudinal slope of channel on the discharge coefficient for ogee spillway and broad crested weir. A comprehensive laboratory study including 17 tests was conducted to estimate the variation of the discharge coefficient due to variation of the longitudinal slope. It was shown that the discharge coefficient is significantly increasing with the increase of the slope by more than 90% or 75% and 80% or 70% for weir and spillway in case of excluding or including the approach velocity head, respectively. Also, CFD (computational fluid dynamics) with a help of Comsol-multyphsics program was used to simulate the problem. The program explained that the linear distribution of the hydraulic pressure changes to a non-linear distribution as the longitudinal slope is considered. Consequently, the values of the discharge coefficient are also affected.展开更多
This paper presents experimental and numerical studies on spray painting processes by using airless spray guns for ship painting. A computational fluid dynamics code was applied to calculate the flow field and the dro...This paper presents experimental and numerical studies on spray painting processes by using airless spray guns for ship painting. A computational fluid dynamics code was applied to calculate the flow field and the droplet trajectories. Droplet size distributions and droplet velocities as necessary inlet characteristics for the simulations were experimentally obtained using a Spraytec Fraunhofer type particle sizer and laser-Doppler anemometry. Effects of shoreline winds and painting distance on the transfer efficiency and on the paint film thickness distributions on the target were numerically studied.展开更多
文摘算力网络(CFN,Computing First Networking)是随着以云计算为代表的传统中心化算力资源下沉到边缘计算的分布式新型算力资源解决方案,是现代数字化社会的发展基础和数字经济时代推动经济高质量发展的新引擎。当前,面向用户服务的传统算力网络在大数据时代,协同计算效率低下的劣势日益明显,算力网络亟需转型革新。在分析传统算力网络基础上,进一步探讨分布式形态下算力网络的可研究和落地方向。研究认为:在分布式架构算力网络下引入区块链、边缘计算等技术可以为智慧地球应用提供数字动力;融合区块链技术的分布式云计算底层操作系统,能够让更多有资源优势和运营能力的单位都有机会基于此算力架构更好实现商业落地;分布式算力网络有望成为未来十年最值得期待的信息基础设施变革之一。
基金Project supported by China Communications Construction Company Limited(No.2008-ZJKJ-11)
文摘To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.
基金Project (50876116) supported by the National Natural Science Foundation of China
文摘The residence-time distribution (RTD) and the compartment model were applied to characterizing the flow regions in red mud separation thickener’s feedwells. Combined with the experimental work, validated mathematical model as well as three-dimensional computational fluid dynamics (CFD) model was established to analyze the flow regions of feedwells on an industrial scale. The concept of RTD, although a well-known method for the characterization of mixing behavior in conventional mixers and reactors, is still a novel measure for the characterization of mixing in feedwells. Numerical simulation results show that the inlet feed rate and the aspect ratio of feedwells are the most critical parameters which affect the RTD of feedwell. Further simulation experiments were then carried out. Under the optimal operation conditions, the volume fraction of dead zone can reduce by10.8% and an increasement of mixing flow volume fraction by 6.5% is also observed. There is an optimum feed inlet rate depending on the feedwell design. The CFD model in conjunction with the RTD analysis then can be used as an effective tool in the design, evaluation and optimization of thickener feedwell in the red mud separation.
文摘Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.
文摘Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.
基金Supported by National Natural Science Foundation of China (No. 50978105)
文摘To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value were discussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.
基金Supported by The Ministry of Science of Serbia with the grants OI144028 and TR12007
文摘AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A and B) were modeled. Case A was defined with a shorter and almost straight duodenal section, while case B has a much longer and curved duodenal section. Velocity, pressure and food concentration distribution were determined and the numerical results were compared with experimental observations. RESULTS: The pressure distribution obtained by numerical simulation was in the range of the recorded experimental results. Case A had a more favorable pressure distribution in comparison with case B. However, case B had better performance in terms of food transport because of more continual food distribution, as well as better emptying of the duodena section. CONCLUSION: This study offers insight into the transport process within the duodenal stump section after surgical intervention, which can be useful for future patient-specific predictions of a surgical outcome.
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0833)supported by the New Century Excellent Talents in University,China+2 种基金Project supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University,ChinaProject(2012T002-E)supported by the Science and Technology Research and Development Program of Ministry of Railway,ChinaProject(14JJ1003)supported by the Natural Science Foundation of Hunan Province,China
文摘Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simulation(DES) with standard SpalartAllmaras(SA) model. The Reynolds number is 4.0×105 in this calculation. The region is three-dimensional. Since the wind barrier and trains are almost invariable cross-sections, only 25 m along the track is modeled. The height of embankment ranges from 1 m to 5 m and the wind barrier is 3 m high. The results show that the wind speed changes obviously before the wind barrier on the horizontal plane, which is 4.5 m high above the track. The speed of wind reduces gradually while approaching the wind barrier. It reaches the minimum value at a distance about 5 m before the wind barrier, and increases dramatically afterwards. The speed of wind at this location is linear with the speed of far field. The train aerodynamic coefficients decrease sharply with the increment of the embankment height. And they take up the monotonicity. Meanwhile, when the height increases from 3 m to 5 m, they just change slightly. It is concluded that the optimum anemometer location is nearly 5 m in front of the wind barrier.
文摘Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.
基金Project(90815024) supported by the National Natural Science Foundation of China
文摘To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valley were analyzed by using the equivalent-linear model. Statistical analysis was also made to the seismic coefficient, and an empirical formula for calculating the maximum acceleration was provided. The results indicate that under the condition of the same dam height and the same base acceleration excitations, with the increase of the river valley width, the position of the maximum acceleration on the axis of the top of the dam moves from the center to the riversides symmetrically. For the narrow valleys, the maximum acceleration occurs in the middle of the axis at the top of the dam; for wide valleys the maximum acceleration appears near the riversides. The result negates the application of 2D dynamical computation for wide valleys, and shows that for the seismic response of high concrete-faced rockfill dams, the seismic coefficient along the axis should be given, except for that along the dam height. Seismic stability analysis of rockfill dams using pseudo-static method can be modified according to the formula.
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,China
文摘Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.
文摘Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution inside the cans during thermal processing. A Computational Fluid Dynamics (CFD) model was developed for thermization of milk in the can heating at 65℃ for the first time to determine the temperature distribution in the canned milk at stationary position. This developed CFD model was validated with the experimental measurements of temperature. The effects of thermization temperature on milk flow profile (velocity), milk temperature and viscosity profiles inside the can during thermal process were investigated. Temperature profiles of milk in can at three different planes (i.e. top, middle and bottom plane) were studied. Moreover, thermization unit was calculated by correlating with temperature and it was found that maximum thermization unit was achieved at 540 s of thermal processing of milk in can.
基金Supported by the Natural Science Foundation of China under Grant No.50675162the Program of Introducing Talents of Discipline to Universities under Grant No.B08031the Key Project of Hubei Province Science & Technology Fund under Grant No.2008CAD027
文摘Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.
基金Project supported by Grant-in-Aid for Scientific Research (JSPS KAKENHI for Young Scientists (S), 21676005)
文摘Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.
基金supported by Ampal Inc., a member of the United States Metal Powders Group, through the CAST CRC, a Cooperative Research Centre established by the Australian Commonwealth Government
文摘An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm × 4.5 mm each, equally spaced 2 or 10 mm apart, were sintered in one batch at 620 °C for 40 min in a tube furnace. The pore distribution in the selected cross section of sintered samples was found to be dependent on the sample separation distance and the distance from the cross section examined to the sample end. A three-dimensional (3D) CFD model was developed to investigate the nitrogen gas behavior near each sintering surface of the three samples during isothermal sintering. The variation in porosity in the cross section of each sintered sample along sample length was found to be closely related to the nitrogen gas flow field near the sintering surfaces.
文摘Within the framework of the embedded-atom method, we performed molecular-dynamics calculations to investigate the structural transformation during melting of two copper clus- ters containing 57 and 58 atoms. The simulation results reveal how their different structural changes can strongly influence internal energy and radial distribution functions. The local structural patterns of different regions during the temperature increase, determined by atom density profiles, are identified for the melting of each cluster. The simulations show sensi- tivities of the structural changes for these two small size clusters with different structures.
文摘In this work, experiment efforts were devoted to study the effect of the longitudinal slope of channel on the discharge coefficient for ogee spillway and broad crested weir. A comprehensive laboratory study including 17 tests was conducted to estimate the variation of the discharge coefficient due to variation of the longitudinal slope. It was shown that the discharge coefficient is significantly increasing with the increase of the slope by more than 90% or 75% and 80% or 70% for weir and spillway in case of excluding or including the approach velocity head, respectively. Also, CFD (computational fluid dynamics) with a help of Comsol-multyphsics program was used to simulate the problem. The program explained that the linear distribution of the hydraulic pressure changes to a non-linear distribution as the longitudinal slope is considered. Consequently, the values of the discharge coefficient are also affected.
文摘This paper presents experimental and numerical studies on spray painting processes by using airless spray guns for ship painting. A computational fluid dynamics code was applied to calculate the flow field and the droplet trajectories. Droplet size distributions and droplet velocities as necessary inlet characteristics for the simulations were experimentally obtained using a Spraytec Fraunhofer type particle sizer and laser-Doppler anemometry. Effects of shoreline winds and painting distance on the transfer efficiency and on the paint film thickness distributions on the target were numerically studied.