Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certai...Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.展开更多
A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of chan...A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.展开更多
An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By ut...An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By utilizing the radio access units(RAU) selection based on large-scale fading,the proposed algorithm decreases enormously the computational complexity. Based on the characteristics of distributed systems,an improved particle swarm optimization(PSO) has been proposed for the antenna selection after the RAU selection. In order to apply the improved PSO algorithm better in antenna selection,a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity. The proposed algorithm can make full use of the advantages of D-MIMO systems,and achieve near-optimal performance in terms of channel capacity with low computational complexity.展开更多
In this context,we study three different strategies to improve the time complexity of the widely used adiabatic evolution algorithms when solving a particular class of quantum search problems where both the initial an...In this context,we study three different strategies to improve the time complexity of the widely used adiabatic evolution algorithms when solving a particular class of quantum search problems where both the initial and final Hamiltonians are one-dimensional projector Hamiltonians on the corresponding ground state.After some simple analysis,we find the time complexity improvement is always accompanied by the increase of some other "complexities" that should be considered.But this just gives the implication that more feasibilities can be achieved in adiabatic evolution based quantum algorithms over the circuit model,even though the equivalence between the two has been shown.In addition,we also give a rough comparison between these different models for the speedup of the problem.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant Nos.2011CDB453,2014CFB440)
文摘Advances in quantum computers threaten to break public key cryptosystems such as RSA, ECC, and EIGamal on the hardness of factoring or taking a discrete logarithm, while no quantum algorithms are found to solve certain mathematical problems on non-commutative algebraic structures until now. In this background, Majid Khan et al.proposed two novel public-key encryption schemes based on large abelian subgroup of general linear group over a residue ring. In this paper we show that the two schemes are not secure. We present that they are vulnerable to a structural attack and that, it only requires polynomial time complexity to retrieve the message from associated public keys respectively. Then we conduct a detailed analysis on attack methods and show corresponding algorithmic description and efficiency analysis respectively. After that, we propose an improvement assisted to enhance Majid Khan's scheme. In addition, we discuss possible lines of future work.
基金Supported by the Starting Fund for Science Research of NJUST (AB41947)the Open Research Fund of National Mobile Communications Research Laboratory (N200609)Science Research Developing Fund of NJUST (XKF07023)
文摘A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.
基金Supported by the National Natural Science Foundation of China(No.61201086,61272495)the China Scholarship Council(No.201506375060)+1 种基金the Planned Science and Technology Project of Guangdong Province(No.2013B090500007) the Dongguan Project on the Integration of Industry,Education and Research(No.2014509102205)
文摘An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By utilizing the radio access units(RAU) selection based on large-scale fading,the proposed algorithm decreases enormously the computational complexity. Based on the characteristics of distributed systems,an improved particle swarm optimization(PSO) has been proposed for the antenna selection after the RAU selection. In order to apply the improved PSO algorithm better in antenna selection,a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity. The proposed algorithm can make full use of the advantages of D-MIMO systems,and achieve near-optimal performance in terms of channel capacity with low computational complexity.
基金supported by the National Natural Science Foundation of China (Grant No. 61173050)
文摘In this context,we study three different strategies to improve the time complexity of the widely used adiabatic evolution algorithms when solving a particular class of quantum search problems where both the initial and final Hamiltonians are one-dimensional projector Hamiltonians on the corresponding ground state.After some simple analysis,we find the time complexity improvement is always accompanied by the increase of some other "complexities" that should be considered.But this just gives the implication that more feasibilities can be achieved in adiabatic evolution based quantum algorithms over the circuit model,even though the equivalence between the two has been shown.In addition,we also give a rough comparison between these different models for the speedup of the problem.