By using the explicit form of the entangled Wigner operator and the entangled state representation we derive the relationship between wave function and corresponding Wigner function for bipartite entangled systems. Th...By using the explicit form of the entangled Wigner operator and the entangled state representation we derive the relationship between wave function and corresponding Wigner function for bipartite entangled systems. The technique of integration within an ordered product (IWOP) of operators is employed in our discussions.展开更多
With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel funct...With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.展开更多
By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their S...By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their Schmidt decompositions and give their entangling operators. Furthermore, based on the above analysis we also find the n-mode Wigner operator. In doing so we may identify the physical meaning of the marginal distribution of the Wigner function.展开更多
To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconduct...To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.展开更多
We characterize A-linear symmetric and contraction module operator semigroup{Tt}t∈R+L(l2(A)),where A is a finite-dimensional C-algebra,and L(l2(A))is the C-algebra of all adjointable module maps on l2(A).Next,we intr...We characterize A-linear symmetric and contraction module operator semigroup{Tt}t∈R+L(l2(A)),where A is a finite-dimensional C-algebra,and L(l2(A))is the C-algebra of all adjointable module maps on l2(A).Next,we introduce the concept of operator-valued quadratic forms,and give a one to one correspondence between the set of non-positive definite self-adjoint regular module operators on l2(A)and the set of non-negative densely defined A-valued quadratic forms.In the end,we obtain that a real and strongly continuous symmetric semigroup{Tt}t∈R+L(l2(A))being Markovian if and only if the associated closed densely defined A-valued quadratic form is a Dirichlet form.展开更多
We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to sev...We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.展开更多
Let N and M be nests on Banach spaces X and Y over the real or complex field F, respectively, with the property that if M ∈ M such that M_ =M, then M is complemented in Y. Let AlgN and AlgM be the associated nest alg...Let N and M be nests on Banach spaces X and Y over the real or complex field F, respectively, with the property that if M ∈ M such that M_ =M, then M is complemented in Y. Let AlgN and AlgM be the associated nest algebras. Assume that Ф : AlgN → AlgM is a bijective map. It is proved that, if dim X = ∞ and if there is a nontrivial element in N which is complemented in X, then Ф is Lie multiplicative (i.e. Ф([A, B]) = [Ф(A), Ф(B)] for all A, B ∈ AlgN) if and only if Ф has the form Ф(A) = TAT^-1 + τ(A) for all A ∈ AlgAN or Ф(A) = -TA^*T^-1 + τ(A) for all A ∈ AlgN, where T is an invertible linear or conjugate linear operator and τ : AlgN →FI is a map with τ([A, B]) = 0 for all A, B ∈ AlgN. The Lie multiplicative maps are also characterized for the case dim X 〈 ∞.展开更多
基金The project supported by the Natural Science Foundation of Heze University of Shandong Province of China under Grant Nos.XY07WL01 and XY05WL01the University Experimental Technology Foundation of Shandong Province of China under Grant No.S04W138
文摘By using the explicit form of the entangled Wigner operator and the entangled state representation we derive the relationship between wave function and corresponding Wigner function for bipartite entangled systems. The technique of integration within an ordered product (IWOP) of operators is employed in our discussions.
基金The project supported by National Natural Science Foundation of China and the President Foundation of the Chinese Academy of Sciences
文摘With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.
文摘By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their Schmidt decompositions and give their entangling operators. Furthermore, based on the above analysis we also find the n-mode Wigner operator. In doing so we may identify the physical meaning of the marginal distribution of the Wigner function.
基金the National Key R&D Program of China(2017YFA0304300),the Chinese Academy of Sciences,Anhui Initiative in Quantum Information Technologies,Technology Committee of Shanghai Municipality,National Natural Science Foundation of China(11905217,11774326,and 11905294)‘Shang-hai Municipal Science and Technology Major Project(2019SHZDZX01)’Natural Science Foundation of Shanghai(19ZR1462700)‘Key-Area Research and Development Program of Guangdong Province(2020B0303030001)’the Youth Talent Lifting Project(2020-JCJQ-QT-030)。
文摘To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.
基金supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Remin University of China(Grant No.10XNJ033)
文摘We characterize A-linear symmetric and contraction module operator semigroup{Tt}t∈R+L(l2(A)),where A is a finite-dimensional C-algebra,and L(l2(A))is the C-algebra of all adjointable module maps on l2(A).Next,we introduce the concept of operator-valued quadratic forms,and give a one to one correspondence between the set of non-positive definite self-adjoint regular module operators on l2(A)and the set of non-negative densely defined A-valued quadratic forms.In the end,we obtain that a real and strongly continuous symmetric semigroup{Tt}t∈R+L(l2(A))being Markovian if and only if the associated closed densely defined A-valued quadratic form is a Dirichlet form.
基金supported by National Natural Science Foundation of China(Grant No.11301022)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University(Grant Nos.RCS2014ZT20 and RCS2014ZZ001)+1 种基金Beijing Natural Science Foundation(Grant No.9144031)the Hong Kong Research Grant Council(Grant Nos.Poly U 501909,502510,502111 and 501212)
文摘We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.
基金supported by National Natural Science Foundation of China (Grant No. 10871111)Tian Yuan Foundation of China (Grant No. 11026161)Foundation of Shanxi University
文摘Let N and M be nests on Banach spaces X and Y over the real or complex field F, respectively, with the property that if M ∈ M such that M_ =M, then M is complemented in Y. Let AlgN and AlgM be the associated nest algebras. Assume that Ф : AlgN → AlgM is a bijective map. It is proved that, if dim X = ∞ and if there is a nontrivial element in N which is complemented in X, then Ф is Lie multiplicative (i.e. Ф([A, B]) = [Ф(A), Ф(B)] for all A, B ∈ AlgN) if and only if Ф has the form Ф(A) = TAT^-1 + τ(A) for all A ∈ AlgAN or Ф(A) = -TA^*T^-1 + τ(A) for all A ∈ AlgN, where T is an invertible linear or conjugate linear operator and τ : AlgN →FI is a map with τ([A, B]) = 0 for all A, B ∈ AlgN. The Lie multiplicative maps are also characterized for the case dim X 〈 ∞.