The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SD...The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.展开更多
Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris...Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.展开更多
In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such ...In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.展开更多
As a new computing mode,cloud computing can provide users with virtualized and scalable web services,which faced with serious security challenges,however.Access control is one of the most important measures to ensure ...As a new computing mode,cloud computing can provide users with virtualized and scalable web services,which faced with serious security challenges,however.Access control is one of the most important measures to ensure the security of cloud computing.But applying traditional access control model into the Cloud directly could not solve the uncertainty and vulnerability caused by the open conditions of cloud computing.In cloud computing environment,only when the security and reliability of both interaction parties are ensured,data security can be effectively guaranteed during interactions between users and the Cloud.Therefore,building a mutual trust relationship between users and cloud platform is the key to implement new kinds of access control method in cloud computing environment.Combining with Trust Management(TM),a mutual trust based access control(MTBAC) model is proposed in this paper.MTBAC model take both user's behavior trust and cloud services node's credibility into consideration.Trust relationships between users and cloud service nodes are established by mutual trust mechanism.Security problems of access control are solved by implementing MTBAC model into cloud computing environment.Simulation experiments show that MTBAC model can guarantee the interaction between users and cloud service nodes.展开更多
文摘The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.
基金supported in part by the National Natural Science Foundation of China under Grant No.61471055
文摘Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.
基金Projects(61272139,61070199,61103182)supported by the National Natural Science Foundation of ChinaProject(2013ZX01028001-002)supported by the National Science and Technology Major Projects of China+1 种基金Project(2011AA01A103)supported by theNational High-Tech Research and Development Plan of ChinaProject(11JJ7003)supported by Hunan Provincial Natural ScienceFoundation of China
文摘In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.
基金ACKNOWLEDGEMENT This paper is supported by the Opening Project of State Key Laboratory for Novel Software Technology of Nanjing University, China (Grant No.KFKT2012B25) and National Science Foundation of China (Grant No.61303263).
文摘As a new computing mode,cloud computing can provide users with virtualized and scalable web services,which faced with serious security challenges,however.Access control is one of the most important measures to ensure the security of cloud computing.But applying traditional access control model into the Cloud directly could not solve the uncertainty and vulnerability caused by the open conditions of cloud computing.In cloud computing environment,only when the security and reliability of both interaction parties are ensured,data security can be effectively guaranteed during interactions between users and the Cloud.Therefore,building a mutual trust relationship between users and cloud platform is the key to implement new kinds of access control method in cloud computing environment.Combining with Trust Management(TM),a mutual trust based access control(MTBAC) model is proposed in this paper.MTBAC model take both user's behavior trust and cloud services node's credibility into consideration.Trust relationships between users and cloud service nodes are established by mutual trust mechanism.Security problems of access control are solved by implementing MTBAC model into cloud computing environment.Simulation experiments show that MTBAC model can guarantee the interaction between users and cloud service nodes.